Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
4th Edition
ISBN: 9780134110684
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 53EAP
The two parallel plates in FIGURE P23.53 are 2.0 cm apart and the electric field strength between them is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Physics
An alpha particle is launched from the negative plate of a parallel plate capacitor. The speed of the alpha particle is initially 5.7 x 104 m/s at 60 degrees above the plate. The capacitor generates an electric field of 7537.6 N/C. The curved path of the alpha particle almost (but not quite) reaches the top positive plate. What is the distance between the capacitor plates? Express your answer in cm.
(An alpha particle consists of two protons and two neutrons. The mass of proton is equal to the mass of a neutron = 1.67 x 10-27 kg)
In figure 2, an upwardly oriented uniform electric field E⃗ of a magnitude of 2.0 × 103 N / C has been established between two horizontal plates by charging the lower plate positively and the upper plate negatively. The plates have a length L = 10.0 cm, and they are at a distance of d = 2.0 cm. An electron is sent between the plates from the left end of the lower plate. The initial velocity ⃗v0 of the electron forms an angle θ = 45◦ with the lower plate, and its magnitude is 6.0 × 106 m / s (a) Will the electron touch one of the plates? (b) If so, determine which one. Then find how far horizontally from the left end the electron will strike.
A proton is projected horizontally midway between two parallel plates that are separated by 0.47 cm. The uniform electric field has
magnitude 6.0 × 105 N/C between the plates. If the plates are 5.6 cm long, find the minimum speed of the proton if it just misses the
lower plate as it emerges from the field. The gravitational force on the proton can be neglected.
O
6.2 x 106 m/s
12 x 106 m/s
11 x 106 m/s
7.4 x 106 m/s
8.7 x 106 m/s
Tw
E
Chapter 23 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Ch. 23 - l. You've been assigned the task of determining...Ch. 23 - Reproduce FIGURE Q23.2 on your paper. For each...Ch. 23 - Rank in order, from largest to smallest, the...Ch. 23 - A small segment of wire in FIGURE Q23.4 contains...Ch. 23 - An electron experiences a force of magnitude F...Ch. 23 - FIGURE Q23.6 shows a hollow soda straw that has...Ch. 23 - The irregularly shaped area of charge in FIGURE...Ch. 23 - A circular disk has surface charge density 8...Ch. 23 - A sphere of radius R has charge Q . The electric...Ch. 23 - The ball in FIGURE Q23.10 is suspended from a...
Ch. 23 - Rank in order, from largest to smallest, the...Ch. 23 - A parallel-plate capacitor consists of two square...Ch. 23 - A small object is released at point 3 in the...Ch. 23 - A proton and an electron are released from rest in...Ch. 23 - Three charges are placed at the comers of the...Ch. 23 - l. What are the strength and direction of the...Ch. 23 - What are the strength and direction of the...Ch. 23 - What are the strength and direction of the...Ch. 23 - What are the strength and direction of the...Ch. 23 - An electric dipole is formed from two charges, q ,...Ch. 23 - An electric dipole is formed from ± 1.0 nC charges...Ch. 23 - An electret is similar to a magnet, but rather...Ch. 23 - The electric field strength 10.0 cm from a very...Ch. 23 - A 10-cm-long thin glass rod uniformly charged to...Ch. 23 - Two 10-cm-long thin glass rods uniformly charged...Ch. 23 - A small glass bead charged to + 6.0 nC is in the...Ch. 23 - The electric field 5.0 cm from a very long charged...Ch. 23 - A 12-cm-long thin rod has the nonuniform charge...Ch. 23 - Two charged rings face each other, 20 cm apart....Ch. 23 - Two 10-cm-diameter charged rings face each other,...Ch. 23 - Two charged disks face each other, 20 cm apart....Ch. 23 - The electric field strength 2.0 cm from the...Ch. 23 - A 20cm20cm cm horizontal metal electrode is...Ch. 23 - Two 2.0-cm-diameter insulating spheres have a 6.0...Ch. 23 - You've hung two very large sheets of plastic...Ch. 23 - A 2.0m X 4.0m flat carpet acquires a uniformly...Ch. 23 - Two circular disks spaced 0.50 mm apart form a...Ch. 23 - A parallel-plate capacitor is formed from two...Ch. 23 - Air "breaks down" when the electric field strength...Ch. 23 - Two parallel plates 1.0 cm apart are equally and...Ch. 23 - a. What is the electric field strength between the...Ch. 23 - Honeybees acquire a charge while flying due to...Ch. 23 - An electron traveling parallel to a uniform...Ch. 23 - The surface charge density on an infinite charged...Ch. 23 - An electron in a vacuum chamber is fired with a...Ch. 23 - A 1.0m -diameter oil droplet (density 900 kg/m3)...Ch. 23 - The permanent electric dipole moment of the water...Ch. 23 - A point charge Q is distance r from a dipole...Ch. 23 - An ammonia molecule (NH3) has a permanent electric...Ch. 23 - What are the strength and direction of the...Ch. 23 - What are the strength and direction of the...Ch. 23 - What are the strength and direction of the...Ch. 23 - Prob. 38EAPCh. 23 - Prob. 39EAPCh. 23 - Derive Equation 23.11 for the field Edipolein the...Ch. 23 - FIGURE P23.41 is a cross section of two infinite...Ch. 23 - FIGURE P23.42 is a cross section of two infinite...Ch. 23 - Prob. 43EAPCh. 23 - Prob. 44EAPCh. 23 - Prob. 45EAPCh. 23 - Prob. 46EAPCh. 23 - Prob. 47EAPCh. 23 - A plastic rod with linear charge density ? is bent...Ch. 23 - An infinite plane of charge with surface charge...Ch. 23 - A sphere of radius R and surface charge density ?...Ch. 23 - Prob. 51EAPCh. 23 - An electron is launched at a 45 angle and a speed...Ch. 23 - The two parallel plates in FIGURE P23.53 are 2.0...Ch. 23 - Prob. 54EAPCh. 23 - Prob. 55EAPCh. 23 - 56. Your physics assignment is to figure out a way...Ch. 23 - Prob. 57EAPCh. 23 - Prob. 58EAPCh. 23 - Prob. 59EAPCh. 23 - Prob. 60EAPCh. 23 - Prob. 61EAPCh. 23 - Prob. 62EAPCh. 23 - In Problems 63 through 66 you are given the...Ch. 23 - Prob. 64EAPCh. 23 - Prob. 65EAPCh. 23 - Prob. 66EAPCh. 23 - A rod of length L lies along the y-axis with its...Ch. 23 - a. An infinitely long sheet of charge of width L...Ch. 23 - a. An infinitely long sheet of charge of width L...Ch. 23 - Prob. 70EAPCh. 23 - Prob. 71EAPCh. 23 - 72. A proton orbits a long charged wire, making ...Ch. 23 - Prob. 73EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P24.17 shows a dipole. If the positive particle has a charge of 35.7 mC and the particles are 2.56 mm apart, what is the electric field at point A located 2.00 mm above the dipoles midpoint?arrow_forwardThe infinite sheets in Figure P25.47 are both positively charged. The sheet on the left has a uniform surface charge density of 48.0 C/m2, and the one on the right has a uniform surface charge density of 24.0 C/m2. a. What are the magnitude and direction of the net electric field at points A, B, and C? b. What is the force exerted on an electron placed at points A, B, and C? FIGURE P25.47arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forward
- A glass sphere with radius 4.00 mm, mass 85.0 g, and total charge 4.00 C is separated by 150.0 cm from a second glass sphere 2.00 mm in radius, with mass 300.0 g and total charge 5.00 C. The charge distribution on both spheres is uniform. If the spheres are released from rest, what is the speed of each sphere the instant before they collide?arrow_forwardFind an expression for the magnitude of the electric field at point A mid-way between the two rings of radius R shown in Figure P24.30. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. FIGURE P24.30 Problems 30 and 31.arrow_forwardA positively charged disk of radius R = 0.0366 m and total charge 56.8 C lies in the xz plane, centered on the y axis (Fig. P24.35). Also centered on the y axis is a charged ring with the same radius as the disk and a total charge of 34.1 C. The ring is a distance d = 0.0050 m above the disk. Determine the electric field at the point P on the y axis, where P is y = 0.0100 m above the origin. FIGURE P24.35 Problems 35 and 36.arrow_forward
- An electron moves horizontally with a speed of 1.55 X10^6 m/s between two horizontal parallel plates. The positive plate is on top. The plates have a length of 11.9 cm and a plate separation that allows a charged particle to escape even after being deflected. The magnitude of the electric field within the plates is 155 N/C. Calculate the final velocity of an electron as it leaves the plates.arrow_forwardThe plates of a parallel-plate capacitor are 3.50 mmmm apart, and each carries a charge of magnitude 75.0 nCnC. The plates are in vacuum. The electric field between the plates has a magnitude of 5.00×106 V/mV/m. What is the area of each plate? Express your answer in meters squared.arrow_forwardmh.2arrow_forward
- An electron starts from rest 2.81 cm from the center of a uniformly charged sphere of radius 2.08 cm. If the sphere carries a total charge of 1.13×10-⁹ C, how fast will the electron be moving when it reaches the surface of the sphere? 300 m/s Submit Answer Incorrect.arrow_forwardThe drawing shows an electron entering the lower left side of a parallel plate capacitor and exiting at the upper right side. The initial speed of the electron is 3.13 × 106 m/s. The capacitor is 2.00 cm long, and its plates are separated by 0.150 cm. Assume that the electric field between the plates is uniform everywhere and find its magnitude. 15.30 + A + 2.00 cm Number i + + + 0.150 cm Unitsarrow_forwardA particle (m = 26 mg, q = - 5.0 µC) moves in a uniform electric field of 60 kN/C in the positive x-direction. At t = 0, the particle is moving 30 m/s in the positive x-direction and is passing through the origin. Determine the maximum distance beyond x = 0 the particle travels in the positive x-direction. Select one: A. 19.5 m B. 117.0 m C. 78.0 m D. 39.0 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY