Concept explainers
(a)
The total electric potential at a large distance from the quadrupole.
(a)
Answer to Problem 34P
The total electric potential at a large distance from the quadrupole is
Explanation of Solution
Formula used:
The expression for the electric potential due to quadrupole is given as,
Here,
Calculation:
Figure (1)
The electric potential at a large distance from dipole is calculated as,
The electric potential due to quadrupole is calculated as,
Substitute the values,
Conclusion:
Therefore, the total electric potential at a large distance from the quadrupole is
(b)
The electric field for
(b)
Answer to Problem 34P
The electric field for
Explanation of Solution
Formula used:
The expression for the electric potential due to quadrupole on the
Calculation:
On
The electric field on the positive
Conclusion:
Therefore, the electric field for
(c)
The result of part (b) will be obtained by the addition of three point charges.
(c)
Answer to Problem 34P
The result of part (b) will be obtained by the addition of three point charges and the magnitude of the electric field is
Explanation of Solution
Formula used:
The expression for the net electric field on the positive
Calculation:
The net electric field on the positive
By using binomial theorem,
Substitute the binomial equation in equation (1)
Conclusion:
Therefore, the result of part (b) will be obtained by the addition of three point charges and the magnitude of the electric field is
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers
- A water molecule is made up of two hydrogen atoms and one oxygen atom, with a total of 10 electrons and 10 protons. The molecule is modeled as a dipole with an effective separation d = 3.9 1012 m between its positive and negative charges. What is the magnitude of the water molecules dipole moment?arrow_forwardA metal sphere with charge +8.00 nC is attached to the left-hand end of a nonconducting rod of length L = 2.00 m. A second sphere with charge +2.00 nC is fixed to the right-hand end of the rod (Fig. P23.53). At what position d along the rod can a charged bead be placed for the bead to be in equilibrium? FIGURE P23.53arrow_forwardTwo small beads having positive charges q1 = 3q and q2 = q are fixed at the opposite ends of a horizontal insulating rod of length d = 1.50 m. The bead with charge q1 is at the origin. As shown in Figure P19.7, a third small, charged bead is free to slide on the rod. (a) At what position x is the third bead in equilibrium? (b) Can the equilibrium be stable?arrow_forward
- Two small spherical conductors are suspended from light-weight vertical insulating threads. The conductors are brought into contact (Fig. P23.50, left) and released. Afterward, the conductors and threads stand apart as shown at right. a. What can you say about the charge of each sphere? b. Use the data given in Figure P23.50 to find the tension in each thread. c. Find the magnitude of the charge on each sphere. Figure P23.50arrow_forward3 1 00 H X). Shown in the figure are two arcs of charge centered at the origin. The inner arc has a radius of curvature of 0.2 meters and a linear charge density of -50 C/m. The outer arc has a radius of curvature of 0.6 meters and a linear charge density of 80 μC/m. With theta given as 30 degrees, calculate the work it would take to bring a 60 μC point charge from infinity to the origin. Enter your answer in units of joules rounding your final answer to two decimal places. If the work is negative, a negative value must be entered. OLDE OAarrow_forwardA dipole has dipole moment p = 1.5 x 10-9 C m oriented in the +x direction and is in a uniform electric field of strength Eo = 4.0 × 106 N/C that is directed 30° from the dipole as shown. The axis perpendicular to the dipole and a test point on that axis are also shown. Eo * (a) What would the charge separation in this dipole be if it were due to one electron and one proton (ie a hydrogen atom)? What would the separation be if it were due to charges of ±1nC? (b) Find the magnitude of the torque on the dipole. (c) Find the work required to rotate the dipole until it is antiparallel to the field (i.e., until p' points in the opposite direction of the electric field). (d) What would be the torque on the dipole if the dipole were oriented antiparallel to the field? Why is this an unstable equilibrium?arrow_forward
- the answer provided is wrongarrow_forwardProblem 5: A thin rod of length L = 1.9 m lies along the positive y-axis with one end at the origin. The rod carries a uniformly distributed charge of Q1 = 5.2 µC. A point charge Q2 = 10.4 uC is located on the positive x-axis a distance a = 0.45 m from the origin. Refer to the figure. dy y X a Part (a) Consider a thin slice of the rod of thickness dy located a distance y away from the origin. What is the direction of the force on the point charge due to the charge on this thin slice? MultipleChoice : 1) Along the positive x-axis 2) Above the negative x-axis 3) Below the positive x-axis 4) Not enough information to determine 5) There is no force between the point charge and the slice of the rod 6) Above the positive x-axis 7) Below the negative x-axis Part (b) Choose the correct equation for x-component of the force, dFx, on the point charge due to the thin slice of the rod. SchematicChoice : kQ1Q2ady Q1Q2ady kQ,Q2ady dF dF, = L(a² + y²) dFx 3 3 L(a² + y²)ž L(a² + y²)ž kQ1Q2ydy kQ,Qzydy…arrow_forwardA thin rod of length L = 1 m lies along the x axis with its left end at the origin. It has a uniform linear charge distribution 2 =-3.2 C/m. How many electrons are there on the rod contributing to the total charge?arrow_forward
- Problem 12: A uniformly charged rod of length L = 1.4 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 8.2 μC. A point P is located on the x-axis a distance a = 1.8 m to the right of the origin. Part (a) Consider a thin slice of the rod of thickness dx located a distance x away from the origin. What is the direction of the electric field at point P due to the charge on this thin slice of the rod? Part (b) Write an equation for the electric field dE at point P due to the thin slide of the rod dx. Give your answers in terms of the variables Q, L, x, a, dx, and the Coulomb constant, k. Notice that the coordinate x will be less than zero over the length of the rod. Part (c) Integrate the electric field contributions from each slice over the length of the rod to write an equation for the net electric field E at point P. Part (d) Calculate the magnitude of the electric field E in kilonewtons per coulomb (kN/C) at point P due to the charged…arrow_forwardThree point charges at q1 x = 0, q2 at x = 5 cm, and q3 at x = 3 cm. Find the ratio of q1:q2 if q3 is at equilibriumarrow_forwardProblem 10: Two point charges, Q₁ = Q₂ = +1.51 µC, are fixed symmetrically on the x axis at x = ±0.357 m. A point particle of charge. Q3 +3.18 μC, with mass m = 13.3 mg can move freely along the y axis. ▷ If the particle on the y axis is released from rest at y₁ 0.0211 m, what will be its speed, in meters per second, when it reaches y2 = 0.0624 m? Consider electric forces only. v = 0.66 m/sarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning