Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit. We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps: 2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of θ and r . (Substitute (l/2) sin θ for sin ( θ / 2 ) cos ( θ / 2 ) in your expression.)
Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit. We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps: 2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of θ and r . (Substitute (l/2) sin θ for sin ( θ / 2 ) cos ( θ / 2 ) in your expression.)
Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the methods of calculus. The Greek mathematician Archimedes (ca. 287—212; BCE) was particularly inventive, using polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased. He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have predicted about the limit.
We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular polygon as being made up of n triangles. By taking the limit as the vertex angle of these mangles goes to zero, you can obtain the area of the circle. To see this, carry out the following steps:
2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of
θ
and r. (Substitute (l/2)
sin
θ
for
sin
(
θ
/
2
)
cos
(
θ
/
2
)
in your expression.)
Definition Definition Two-dimentional plane figure composed of a finite number of straight line segments connected to form a closed chain or circuit. A polygonal circuit's segments are known as its edges or sides, and the points where two edges meet are known as its vertices or corners.
a) Find the scalars p, q, r, s, k1, and k2.
b) Is there a different linearly independent eigenvector associated to either k1 or k2? If yes,find it. If no, briefly explain.
Plz no chatgpt answer Plz
Will upvote
1/ Solve the following:
1 x +
X + cos(3X)
-75
-1
2
2
(5+1) e
5² + 5 + 1
3 L
-1
1
5² (5²+1)
1
5(5-5)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.