College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 2RQ
Review Question 23.2 You've found a concave mirror. How can you estimate its focal length?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
College Physics
Ch. 23 - Review Question 23.1 A mirror is hanging on a...Ch. 23 - Review Question 23.2 You've found a concave...Ch. 23 - Review Question 23.3 You place a concave mirror on...Ch. 23 - Review Question 23.5 Where should you place an...Ch. 23 - Review Question 23.6 If we have a mathematical...Ch. 23 - Review Question 23.7 What is the main difference...Ch. 23 - Review Question 23.8 If a person with normal...Ch. 23 - Review Question 23.9 Why is saying that a...Ch. 23 - Where does the image of an object in a plane...Ch. 23 - Where does the image of an object that is s meters...
Ch. 23 - 3. A plane mirror produces an image of an object...Ch. 23 - A concave mirror can produce an image that is...Ch. 23 - 5. A convex mirror can produce an image that is...Ch. 23 - 6. A virtual image is the image produced
a. on as...Ch. 23 - 7. To see an image of an object that is enlarged,...Ch. 23 - To see an image of an object that is enlarged,...Ch. 23 - Prob. 9MCQCh. 23 - 10. When drawing images of objects produced by...Ch. 23 - 11. The focal length of a glass lens is 10 cm....Ch. 23 - 12. A microbiologist uses a microscope to look at...Ch. 23 - 13. The human eye works in a similar way to which...Ch. 23 - Which of the following changes will result in a...Ch. 23 - When we draw a ray passing through the center of a...Ch. 23 - 16. You run toward a building with walls of a...Ch. 23 - 17. A tiny plane mirror can produce an image...Ch. 23 - Explain how we derived the mirror equation.Ch. 23 - 19. Explain how we derived the thin lens...Ch. 23 - Explain the difference between a real and a...Ch. 23 - You stand in front of a fun house mirror. You see...Ch. 23 - 22. A bubble of air is suspended underwater. Draw...Ch. 23 - 23. A bubble of oil is suspended in water. Draw...Ch. 23 - A typical person underwater cannot focus clearly...Ch. 23 - In a video projector, the picture that appears on...Ch. 23 - The retina has a blind spot at the place where the...Ch. 23 - You need to teach your friend how to draw rays to...Ch. 23 - Place a pencil in front of a plane mirror so that...Ch. 23 - 3.* Use geometry to prove that the virtual image...Ch. 23 - * You are 1.8 m tall. Where should you place the...Ch. 23 - 5. * Two people are standing in front of a...Ch. 23 - 6. * Test an idea Describe an experiment that you...Ch. 23 - * Describe in detail an experiment to find the...Ch. 23 - * Explain with a ray diagram how (a) a concave...Ch. 23 - 9. * Test an idea Describe an experiment to test...Ch. 23 - * Test an idea Describe an experiment to test the...Ch. 23 - 11. * Tablespoon mirror You look at yourself in...Ch. 23 - * Use ray diagrams and the mirror equation to...Ch. 23 - Repeat Problem 23.12 for a convex mirror of focal...Ch. 23 - 14. Use ray diagrams and the mirror equation to...Ch. 23 - 15. * Sinking ships A legend says that Archimedes...Ch. 23 - 16. * EST Fortune-teller A fortune-teller looks...Ch. 23 - * You view yourself in a large convex mirror of...Ch. 23 - * Seeing the Moon in a mirror The Moons diameter...Ch. 23 - 19. * You view your face in a +20-cm focal length...Ch. 23 - 20. * Buying a dental mirror A dentist wants to...Ch. 23 - * Using a dental mirror A dentist examines a tooth...Ch. 23 - * If you place a point-like light source on the...Ch. 23 - 24. * You have a convex lens and a candle....Ch. 23 - 25. * Explain how to draw ray diagrams to locate...Ch. 23 - * Draw ray diagrams to show how a convex lens can...Ch. 23 - 27. * Use a ruler to draw ray diagrams to locate...Ch. 23 - 28. * Repeat the procedure described in Problem...Ch. 23 - 29. * Repeat the procedure described in Problem...Ch. 23 - 30 * Repeat the procedure in Problem 23.27 for the...Ch. 23 - * Partially covering lens Your friend thinks that...Ch. 23 - * Use ray diagrams to locate the images of the...Ch. 23 - 33. *Use ray diagrams to locate the images of the...Ch. 23 - Light passes through a narrow slit, and then...Ch. 23 - * Describe two experiments that you can perform to...Ch. 23 - * Shaving/makeup mirror You wish to order a mirror...Ch. 23 - 37. Dentist lamps Dentists use special lamps that...Ch. 23 - 38. * A large concave mirror of focal length 3.0m...Ch. 23 - 39 * EST Two convex mirrors on the side of a van...Ch. 23 - Camera You are using a camera with a lens of focal...Ch. 23 - 42. * Camera A camera with an 8.0-cm focal length...Ch. 23 - Video projector An LCD video projector (LCD stands...Ch. 23 - Photo of carpenter ant You take a picture of a...Ch. 23 - * Photo of secret document A secret agent uses a...Ch. 23 - 46. * Photo of landscape To photograph a landscape...Ch. 23 - * Make a rough graph of image distance versus...Ch. 23 - * Make a rough graph of linear magnification...Ch. 23 - * Repeat Problem 23.48 for a concave lens of...Ch. 23 - BIO Eye The image distance for the lens of a...Ch. 23 - BIO Lens-retina distance Fish and amphibians...Ch. 23 - BIO Nearsighted and farsighted (a) A woman can...Ch. 23 - * BIO Prescribe glasses A man who can produce...Ch. 23 - 54. * BIO Correcting vision A woman who produces...Ch. 23 - 55. * BIO Where are the far and near points? (a) A...Ch. 23 - * BIO Age-related vision changes A 35-year-old...Ch. 23 - 5.7 Looking at an aphid You examine an aphid on a...Ch. 23 - 58. * Reading with a magnifying glass You examine...Ch. 23 - 59. * Seeing an image with a magnifying glass A...Ch. 23 - * Stamp collector A stamp collector is viewing a...Ch. 23 - * You place a +20-cm focal length convex lens at a...Ch. 23 - 62. * You place a +25-cm focal length convex lens...Ch. 23 - * EST You place a candle 10 cm in front of a...Ch. 23 - 64. * EST Repeat Problem 23.63 for an object...Ch. 23 - ** You measure the focal length of a concave lens...Ch. 23 - 66.** Telescope A telescope consists of a +4.0-cm...Ch. 23 - 67. ** Yerkes telescope The world’s largest...Ch. 23 - * Telescope A telescope consisting of a +3.0-cm...Ch. 23 - 69. *** Design a telescope You are marooned on a...Ch. 23 - * Microscope A microscope has a +0.50-cm objective...Ch. 23 - 71. ** BIO Dissecting microscope A dissecting...Ch. 23 - *** Microscope A microscope has an objective lens...Ch. 23 - 73. ** Microscope Determine the lens separation...Ch. 23 - * Figure P23.75 shows three cases of the primary...Ch. 23 - Prob. 78GPCh. 23 - ** Two-lens camera A two-lens camera (see Figure...Ch. 23 - **You have a small spherically shaped bottle made...Ch. 23 - BIO Find a farsighted person. Design an experiment...Ch. 23 - 82. BIO Find a nearsighted person. Design an...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - BIO Laser surgery for the eye LASIK...Ch. 23 - Prob. 89RPPCh. 23 - Prob. 90RPPCh. 23 - Prob. 91RPPCh. 23 - Prob. 92RPPCh. 23 - Prob. 93RPP
Additional Science Textbook Solutions
Find more solutions based on key concepts
33.32 Three polarizing filters are stacked, with the polarizing axis of the second and third filters at 23.0 an...
University Physics (14th Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
Youre investigating a subway accident in which a train derailed while rounding an unbanked curve of radius 150 ...
Essential University Physics: Volume 1 (3rd Edition)
A 2.2-m-long wire carrying 3.5 A is wound into a tight coil 5.0 cm in diameter. Find the magnetic field at its ...
Essential University Physics (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A concave spherical mirror has a radius of curvature of magnitude 24.0 cm. (a) Determine the object position for which the resulting image is upright and larger than the object by a factor of 3.00. (b) Draw a ray diagram to determine the position of the image. (c) Is the image real or virtual?arrow_forwardAn object 10.0 cm tall is placed at the zero mark of a meter-stick. A spherical mirror located at some point on the meter-stick creates an image of the object that is upright, 4.00 cm tall, and located at the 42.0-cm mark of the meterstick. (a) Is the mirror convex or concave? (b) Where is the mirror? (c) What is the mirror s focal length?arrow_forwardA converging lens in a vertical plane receives light from an object and forms an inverted image on a screen. An opaque card is then placed next to the lens, covering only the upper half of the lens. What happens to the image on the screen? (a) The upper half of the image disappears. (b) The lower half of the image disappears. (c) 'The entire image disappears, (d) The entire image is still visible, but is dimmer. (e) No change in the image occurs.arrow_forward
- What are the differences between real and virtual images? How can you tell (by looking) whether an image formed by a single lens or mirror is real or virtual?arrow_forwardA dedicated sports car enthusiast polishes the inside and outside surfaces of a hubcap that is a thin section of a sphere. When she looks into one side of the hubcap, she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?arrow_forward(a) A concave spherical mirror forms ail inverted image different in size from the object by a factor a 1. I'he distance between object and image is d. Find the local length of the mirror, (b) What If? Suppose the mirror is convex, an upright image is formed, and a 1. Determine the focal length of the minor.arrow_forward
- A dentist uses a spherical mirror to examine a tooth. The tooth is 1.00 cm in front of the mirror, and the image is formed 10.0 cm behind the mirror. Determine (a) the mirrors radius of curvature and (b) the magnification of the image.arrow_forwardA dedicated sports car enthusiast polishes the inside outside surfaces of a hubcap that is a thin section of a sphere. When she looks into one side of the hubcap. she sees an image of her face 30.0 cm in back of the hubcap. She then flips the hubcap over and sees another image of her face 10.0 cm in back of the hubcap. (a) How far is her face from the hubcap? (b) What is the radius of curvature of the hubcap?arrow_forward(i) An object is plated at a position p f from a concave mirror as shown in Figure CQ39.12a, where f is the focal length of the mirror. In a finite time interval, the object is moved to the right to a position at the focal point F of the mirror. Show that the image of the object moves at a speed greater than the speed of light. (ii) A laser pointer is suspended in a horizontal plane and set into rapid rotation as shown in Figure CQ39 12b. Show that the spot of light it produces on a distant screen can move across the screen at a speed greater than the speed of light. (If you carry out this experiment. make sure the direct laser light cannot enter a person's eyes.) (iii) Argue that the experiments in parts (i) and (ii) do not invalidate the principle that no material, no energy, and no information can move faster than light moves in a vacuum. Figure CQ39.12arrow_forward
- Construct ray diagrams to determine whether each of the following statement is true (T) or false (F). (a) For an object at a concave mirrors center of curvature, the image is real and inverted. (b) As an object approaches the focal point of a concave mirror, the image size shrinks to zero. (c) For an object in front of a convex mirror, the image is always virtual and upright.arrow_forwardA jewelers lens of focal length 5.0 cm is used as a magnifier. With the lens held near the eye, determine (a) the angular magnification when the object is at the focal point of the lens and (b) the angular magnification when the image formed by the lens is at the near point of the eye (25 cm). (c) What is the object distance giving the maximum magnification?arrow_forwardThe object in Figure P23.52 is mid-way between the lens and the mirror, which are separated by a distance d = 25.0 cm. The magnitude of the mirrors radius of curvature is 20.0 cm, and the lens has a focal length of 16.7 cm. (a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. (b) Is the image real or virtual? (c) Is it upright or inverted? (d) What is the overall magnification of the image? Figure P23.52arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY