Concept explainers
(a)
Write an expression for Raul`s monthly data costs
(a)
Answer to Problem 23PPS
Expression:
Explanation of Solution
Given:
Condition given: A tablet data provider offers different plans for data usage. The plan Raul chose has a monthly fee of $29.99 per month for 5 GB of data with an additional cost of $10 for each gigabyte over 5.
Concept Used:
Let the number of extra GB Raul used is ‘ x’
Monthly fee of $29.99 per month for 5 GB of datawith an additional cost of $10 for each gigabyte over 5 GB.
Cost of extra GB used at the rate $10 per GB =
Calculation:
Expression: Monthly charge + cost of extra GB used
Expression:
Thus, the required expression is
(b)
Find the minimum number of GB of data Raul can use per month to make unlimited plan cheaper.
(b)
Answer to Problem 23PPS
Minimum 3GB of extra data
Explanation of Solution
Given:
Condition given: A tablet data provider offers different plans for data usage. The plan Raul chose has a monthly fee of $29.99 per month for 5 GB of data with an additional cost of $10 for each gigabyte over 5.
Concept Used:
Raul learns that his data provider is offering an unlimited data plan for $59.99 per month.
Find the minimum number of gigabytes Raul could use per month to make the unlimited plan cheaper than his current plan.
According to this condition the unlimited plan $59.99 must be cheaper than the previous plan he choose
Calculation:
In words: Previous plan > unlimited plan
In inequality equation form:
Solve the inequality:
Minimum number of GB of data Raul can use per month to make unlimited plan cheaper is 3GB.
Thus, Raul can used 3GB of extra data to make the unlimited plan is cheaper than his regular plan .
Chapter 2 Solutions
Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
University Calculus: Early Transcendentals (4th Edition)
Elementary Statistics (13th Edition)
Elementary Statistics
Elementary Statistics: Picturing the World (7th Edition)
- Let 2 A = 4 3 -4 0 1 (a) Show that v = eigenvalue. () is an eigenvector of A and find the corresponding (b) Find the characteristic polynomial of A and factorise it. Hint: the answer to (a) may be useful. (c) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. (d) Find an invertible matrix P and a diagonal matrix D such that P-¹AP = D.arrow_forward(c) Let 6 0 0 A = -10 4 8 5 1 2 (i) Find the characteristic polynomial of A and factorise it. (ii) Determine all eigenvalues of A and find bases for the corresponding eigenspaces. (iii) Is A diagonalisable? Give reasons for your answer.arrow_forwardmost 2, and let Let P2 denote the vector space of polynomials of degree at D: P2➡ P2 be the transformation that sends a polynomial p(t) = at² + bt+c in P2 to its derivative p'(t) 2at+b, that is, D(p) = p'. (a) Prove that D is a linear transformation. (b) Find a basis for the kernel ker(D) of the linear transformation D and compute its nullity. (c) Find a basis for the image im(D) of the linear transformation D and compute its rank. (d) Verify that the Rank-Nullity Theorem holds for the linear transformation D. (e) Find the matrix representation of D in the standard basis (1,t, t2) of P2.arrow_forward
- (c) Let A = -1 3 -4 12 3 3 -9 (i) Find bases for row(A), col(A) and N(A). (ii) Determine the rank and nullity of A, and verify that the Rank-Nullity Theorem holds for the above matrix A.arrow_forward-(0)-(0)-(0) X1 = x2 = x3 = 1 (a) Show that the vectors X1, X2, X3 form a basis for R³. y= (b) Find the coordinate vector [y] B of y in the basis B = (x1, x2, x3).arrow_forwardLet A 1 - 13 (1³ ³) 3). (i) Compute A2, A3, A4. (ii) Show that A is invertible and find A-¹.arrow_forward
- Let H = {(a a12 a21 a22, | a1 + a2 = 0} . € R²x²: a11 + a22 (i) Show that H is a subspace of R2×2 (ii) Find a basis of H and determine dim H.arrow_forward2 5 A=1 2 -2 b=2 3 1 -1 3 (a) Calculate det(A). (b) Using (a), deduce that the system Ax = b where x = (x1, x2, x3) is consistent and determine x2 using Cramer's rule.arrow_forwardConsider the least squares problem Ax = b, where 12 -09-0 A 1 3 1 4 and b = (a) Write down the corresponding normal equations. (b) Determine the set of least squares solutions to the problem.arrow_forward
- The function f(x) is represented by the equation, f(x) = x³ + 8x² + x − 42. Part A: Does f(x) have zeros located at -7, 2, -3? Explain without using technology and show all work. Part B: Describe the end behavior of f(x) without using technology.arrow_forwardHow does the graph of f(x) = (x − 9)4 – 3 compare to the parent function g(x) = x²?arrow_forwardFind the x-intercepts and the y-intercept of the graph of f(x) = (x − 5)(x − 2)(x − 1) without using technology. Show all work.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education