CALC A hollow, thin-walled insulating cylinder of radius R and length L (like the cardboard tube in a roll of toilet paper) has charge Q uniformly distributed over its surface, (a) Calculate the electric potential at all points along the axis of the tube. Take the origin to be at the center of the tube, and take the potential to be zero at infinity, (b) Show that if L << R , the result of part (a) reduces to the potential on the axis of a ring of charge of radius R. (See Example 23.11 in Section 23.3.) (c) Use the result of part (a) to find the electric field at all points along the axis of the tube.
CALC A hollow, thin-walled insulating cylinder of radius R and length L (like the cardboard tube in a roll of toilet paper) has charge Q uniformly distributed over its surface, (a) Calculate the electric potential at all points along the axis of the tube. Take the origin to be at the center of the tube, and take the potential to be zero at infinity, (b) Show that if L << R , the result of part (a) reduces to the potential on the axis of a ring of charge of radius R. (See Example 23.11 in Section 23.3.) (c) Use the result of part (a) to find the electric field at all points along the axis of the tube.
CALC A hollow, thin-walled insulating cylinder of radius R and length L (like the cardboard tube in a roll of toilet paper) has charge Q uniformly distributed over its surface, (a) Calculate the electric potential at all points along the axis of the tube. Take the origin to be at the center of the tube, and take the potential to be zero at infinity, (b) Show that if L << R, the result of part (a) reduces to the potential on the axis of a ring of charge of radius R. (See Example 23.11 in Section 23.3.) (c) Use the result of part (a) to find the electric field at all points along the axis of the tube.
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.