A thin spherical shell with radius R 1 = 3.00 cm is concentric with a larger thin spherical shell with radius R 2 = 5.00 cm. Both shells are made of insulating material. The smaller shell has charge q 1 = +6.00 nC distributed uniformly over its surface, and the larger shell has charge q 2 = −9.00 nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells, (a) What is the electric potential due to the two shells at the following distance from their common center: (i) r = 0; (ii) r = 4.00 cm; (iii) r = 6.00 cm? (b) What is the magnitude of the potential difference between the surfaces of the two shells? Which shell is at higher potential: the inner shell or the outer shell?
A thin spherical shell with radius R 1 = 3.00 cm is concentric with a larger thin spherical shell with radius R 2 = 5.00 cm. Both shells are made of insulating material. The smaller shell has charge q 1 = +6.00 nC distributed uniformly over its surface, and the larger shell has charge q 2 = −9.00 nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells, (a) What is the electric potential due to the two shells at the following distance from their common center: (i) r = 0; (ii) r = 4.00 cm; (iii) r = 6.00 cm? (b) What is the magnitude of the potential difference between the surfaces of the two shells? Which shell is at higher potential: the inner shell or the outer shell?
A thin spherical shell with radius R1 = 3.00 cm is concentric with a larger thin spherical shell with radius R2 = 5.00 cm. Both shells are made of insulating material. The smaller shell has charge q1 = +6.00 nC distributed uniformly over its surface, and the larger shell has charge q2 = −9.00 nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells, (a) What is the electric potential due to the two shells at the following distance from their common center: (i) r = 0; (ii) r = 4.00 cm; (iii) r = 6.00 cm? (b) What is the magnitude of the potential difference between the surfaces of the two shells? Which shell is at higher potential: the inner shell or the outer shell?
!
Required information
The radius of the Moon is 1.737 Mm and the distance between Earth and the Moon is 384.5 Mm.
The intensity of the moonlight incident on her eye is 0.0220 W/m². What is the intensity incident on her retina if the
diameter of her pupil is 6.54 mm and the diameter of her eye is 1.94 cm?
W/m²
Required information
An object is placed 20.0 cm from a converging lens with focal length 15.0 cm (see the figure, not drawn to scale). A
concave mirror with focal length 10.0 cm is located 76.5 cm to the right of the lens. Light goes through the lens, reflects
from the mirror, and passes through the lens again, forming a final image.
Converging
lens
Object
Concave
mirror
15.0 cm
-20.0 cm-
10.0 cm
d cm
d = 76.5.
What is the location of the final image?
cm to the left of the lens
!
Required information
A man requires reading glasses with +2.15-D refractive power to read a book held 40.0 cm away with a relaxed eye.
Assume the glasses are 1.90 cm from his eyes.
His uncorrected near point is 1.00 m. If one of the lenses is the one for distance vision, what should the refractive power of the other
lens (for close-up vision) in his bifocals be to give him clear vision from 25.0 cm to infinity?
2.98 D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.