
Introduction to General, Organic and Biochemistry
11th Edition
ISBN: 9781285869759
Author: Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 23.7P
Interpretation Introduction
Interpretation:
Difference in reactions catalyzed by lyases and hydrolases is to be determined.
Concept introduction:
The chemical digestion of food is done by the digestive enzymes. All of the digestive enzymes that break down the food molecules in the presence of water are hydrolases. Lyases enzymes are responsible for catalyzing the addition of groups to double bond or removal of groups to form double bonds.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
Calculate the solubility of CaF2 in g/L (Kp = 4.0 x 10-8).
sp
For the following reaction with excess reagent, predict the product. Be sure your answer accounts for stereochemistry. If multiple stereocenters are
formed, be sure to draw all products using appropriate wedges and dashes.
1. EtLi, Et₂O
CH₁
?
2. H₂O*
Write the systematic name of each organic molecule:
structure
요
OH
ہو۔
HO
OH
name
X
S
☐
☐
Chapter 23 Solutions
Introduction to General, Organic and Biochemistry
Ch. 23 - What is the difference between a catalyst and an...Ch. 23 - What are ribozymes made of?Ch. 23 - Would a lipase hydrolyze two triglycerides, one...Ch. 23 - Compare the activation energy in uncatalyzed...Ch. 23 - Prob. 23.5PCh. 23 - Prob. 23.6PCh. 23 - Prob. 23.7PCh. 23 - Monoamine oxidases are important enzymes in brain...Ch. 23 - Prob. 23.9PCh. 23 - 0 What kind of reaction does each of the following...
Ch. 23 - Prob. 23.11PCh. 23 - Prob. 23.12PCh. 23 - 3 What is the difference between reversible and...Ch. 23 - Prob. 23.14PCh. 23 - 5 At a very low concentration of a certain...Ch. 23 - 6 If we wish to double the rate of an...Ch. 23 - 7 A bacterial enzyme has the following...Ch. 23 - 8 The optimal temperature for the action of...Ch. 23 - 9 The activity of pepsin was measured at various...Ch. 23 - Prob. 23.20PCh. 23 - Prob. 23.21PCh. 23 - Prob. 23.22PCh. 23 - Prob. 23.23PCh. 23 - 4 What kind of chemical reaction occurs most...Ch. 23 - 5 Which of the following is a correct statement...Ch. 23 - Prob. 23.26PCh. 23 - 7 Enzymes are long protein chains, usually...Ch. 23 - Prob. 23.28PCh. 23 - Prob. 23.29PCh. 23 - 0 Can the product of a reaction that is part of a...Ch. 23 - 1 What is the difference between a zymogen and a...Ch. 23 - 2 The enzyme trypsin is synthesized by the body in...Ch. 23 - Prob. 23.33PCh. 23 - Prob. 23.34PCh. 23 - Prob. 23.35PCh. 23 - Prob. 23.36PCh. 23 - Prob. 23.37PCh. 23 - Prob. 23.38PCh. 23 - 9 The enzyme phosphofructokinase (PFK) (Chapter...Ch. 23 - Prob. 23.40PCh. 23 - 1 After a heart attack, the levels of certain...Ch. 23 - Prob. 23.42PCh. 23 - Prob. 23.43PCh. 23 - Prob. 23.44PCh. 23 - 5 Chemists who have been exposed for years to or...Ch. 23 - 6 Which enzyme preparation is given to patients...Ch. 23 - 7 Chymotrypsm is secreted by the pancreas and...Ch. 23 - 8 Explain why transition-state analogs are potent...Ch. 23 - Prob. 23.49PCh. 23 - 0 Explain the relationship between...Ch. 23 - 1 (Chemical Connections 23A) Acetylcholine causes...Ch. 23 - Prob. 23.52PCh. 23 - Prob. 23.53PCh. 23 - Prob. 23.54PCh. 23 - Prob. 23.55PCh. 23 - 6 (Chemical Connections 23C) What role does Mn2+...Ch. 23 - 7 (Chemical Connections 23C) Which amino acids of...Ch. 23 - 8 (Chemical Connections 23D) What is the strategy...Ch. 23 - 9 (Chemical Connections 23D) Why did scientists...Ch. 23 - Prob. 23.60PCh. 23 - Prob. 23.61PCh. 23 - Prob. 23.62PCh. 23 - 3 (Chemical Connections 23E) What is the...Ch. 23 - Prob. 23.64PCh. 23 - Prob. 23.65PCh. 23 - Prob. 23.66PCh. 23 - Prob. 23.67PCh. 23 - Prob. 23.68PCh. 23 - Prob. 23.69PCh. 23 - Prob. 23.70PCh. 23 - 1 Food can be preserved by inactivation of enzymes...Ch. 23 - Prob. 23.72PCh. 23 - 3 Would you expect to find active digestive...Ch. 23 - Prob. 23.74PCh. 23 - Prob. 23.75PCh. 23 - Prob. 23.76PCh. 23 - 7 An enzyme has the following pH dependence: At...Ch. 23 - Prob. 23.78PCh. 23 - Prob. 23.79PCh. 23 - 0 Nerve gases operate by forming covalent bonds at...Ch. 23 - 1 What would be the appropriate name for an enzyme...Ch. 23 - Prob. 23.82PCh. 23 - 3 A liver enzyme is made of four subunits: 2A and...Ch. 23 - Prob. 23.84PCh. 23 - Prob. 23.85PCh. 23 - Prob. 23.86PCh. 23 - Prob. 23.87PCh. 23 - Prob. 23.88PCh. 23 - Prob. 23.89PCh. 23 - Prob. 23.90PCh. 23 - Prob. 23.91P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. D ㄖˋ ید H No reaction. + 5 H₂O.* Click and drag to start drawing a structure. OH H₂Oarrow_forwardDraw one product of an elimination reaction between the molecules below. Note: There may be several correct answers. You only need to draw one of them. You do not need to draw any of the side products of the reaction 'O 10 + x 也 HO + 义 Click and drag to start drawing a structure.arrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H- :0: C=N: b Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0° b=0 Xarrow_forward
- A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. • If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + This transformation can't be done in one step. T iarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: H+ O OH H+ + H₂O ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. X § ©arrow_forwardTable 1.1 Stock Standard Solutions Preparation. The amounts shown should be dissolved in 100 mL. Millipore water. Calculate the corresponding anion concentrations based on the actual weights of the reagents. Anion Amount of reagent (g) Anion Concentration (mg/L) 0.1649 Reagent Chloride NaCl Fluoride NaF 0.2210 Bromide NaBr 0.1288 Nitrate NaNO3 0.1371 Nitrite NaNO2 0.1500 Phosphate KH2PO4 0.1433 Sulfate K2SO4 0.1814arrow_forward
- Draw the structure of the pound in the provided CO as a 300-1200 37(2), 11 ( 110, and 2.5 (20arrow_forwardPlease help me with # 4 and 5. Thanks in advance!arrow_forwardA small artisanal cheesemaker is testing the acidity of their milk before it coagulates. During fermentation, bacteria produce lactic acid (K₁ = 1.4 x 104), a weak acid that helps to curdle the milk and develop flavor. The cheesemaker has measured that the developing mixture contains lactic acid at an initial concentration of 0.025 M. Your task is to calculate the pH of this mixture and determine whether it meets the required acidity for proper cheese development. To achieve the best flavor, texture and reduce/control microbial growth, the pH range needs to be between pH 4.6 and 5.0. Assumptions: Lactic acid is a monoprotic acid H H :0:0: H-C-C H :0: O-H Figure 1: Lewis Structure for Lactic Acid For simplicity, you can use the generic formula HA to represent the acid You can assume lactic acid dissociation is in water as milk is mostly water. Temperature is 25°C 1. Write the K, expression for the dissociation of lactic acid in the space provided. Do not forget to include state symbols.…arrow_forward
- Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. :0: :0 H. 0:0 :0: :6: S: :0: Select to Edit Arrows ::0 Select to Edit Arrows H :0: H :CI: Rotation Select to Edit Arrows H. < :0: :0: :0: S:arrow_forward3:48 PM Fri Apr 4 K Problem 4 of 10 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Mg. :0: Select to Add Arrows :0: :Br: Mg :0: :0: Select to Add Arrows Mg. Br: :0: 0:0- Br -190 H 0:0 Select to Add Arrows Select to Add Arrows neutralizing workup H CH3arrow_forwardIarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry In Focus
Chemistry
ISBN:9781305084476
Author:Tro, Nivaldo J., Neu, Don.
Publisher:Cengage Learning