CP Deflection in a CRT . Cathode-ray tubes (CRTs) were often found in oscilloscopes and computer monitors. In Fig. F23.63 an electron with an initial speed of 6.50 × 10 6 m/s is projected along the axis midway between the deflection plates of a cathode-ray tube. The potential difference between the two plates is 22.0 V and the lower plate is the one at higher potential, (a) What is the force (magnitude and direction) on the electron when it is between the plates? (b) What is the acceleration of the electron (magnitude and direction) when acted on by the force in part (a)? (c) How far below the axis has the electron moved when it reaches the end of the plates? (d) At what angle with the axis is it moving as it leaves the plates? (e) How far below the axis will it strike the fluorescent screen S? Figure F23.63
CP Deflection in a CRT . Cathode-ray tubes (CRTs) were often found in oscilloscopes and computer monitors. In Fig. F23.63 an electron with an initial speed of 6.50 × 10 6 m/s is projected along the axis midway between the deflection plates of a cathode-ray tube. The potential difference between the two plates is 22.0 V and the lower plate is the one at higher potential, (a) What is the force (magnitude and direction) on the electron when it is between the plates? (b) What is the acceleration of the electron (magnitude and direction) when acted on by the force in part (a)? (c) How far below the axis has the electron moved when it reaches the end of the plates? (d) At what angle with the axis is it moving as it leaves the plates? (e) How far below the axis will it strike the fluorescent screen S? Figure F23.63
CP Deflection in a CRT. Cathode-ray tubes (CRTs) were often found in oscilloscopes and computer monitors. In Fig. F23.63 an electron with an initial speed of 6.50 × 106m/s is projected along the axis midway between the deflection plates of a cathode-ray tube. The potential difference between the two plates is 22.0 V and the lower plate is the one at higher potential, (a) What is the force (magnitude and direction) on the electron when it is between the plates? (b) What is the acceleration of the electron (magnitude and direction) when acted on by the force in part (a)? (c) How far below the axis has the electron moved when it reaches the end of the plates? (d) At what angle with the axis is it moving as it leaves the plates? (e) How far below the axis will it strike the fluorescent screen S?
A block of mass m₁
=
10.0 kg is connected to a block of mass m₂
34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
Vm1
×
1.32
Vm2
= 1.32
×
m/s
m/s
A block of mass m₁ = 10.0 kg is connected to a block of mass m₂ = 34.0 kg by a massless string that passes over a light, frictionless pulley. The 34.0-kg block is connected to a spring that has negligible mass and a force constant of k = 200 N/m as shown in the figure below. The spring is
unstretched when the system is as shown in the figure, and the incline is frictionless. The 10.0-kg block is pulled a distance h = 22.0 cm down the incline of angle 0 = 40.0° and released from rest. Find the speed of each block when the spring is again unstretched.
m/s
Vm1
Vm2
m/s
mi
m2
k
i
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as in the figure below. The helper spring engages when the main leaf spring is compressed by distance yo, and then helps to
support any additional load. Consider a leaf spring constant of 5.45 × 105 N/m, helper spring constant of 3.60 × 105 N/m, and y = 0.500 m.
Truck body
Dyo
Axle
(a) What is the compression of the leaf spring for a load of 4.90 × 105 N?
m
(b) How much work is done compressing the springs?
]
Chapter 23 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.