(a)
Interpretation:
For the given pair of
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Deactivating groups destabilize the arenium ion intermediate.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
By using table 23-3, the –OH group is strongly activating than
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(b)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Alkyl groups have electron donating inductive effect, thus stabilizing the positive charge on the adjacent carbon. The electrophilic aromatic substitution reaction rate increases with the increase in electron density around the ring. The groups which donate electrons, activates the aromatic ring. Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished relative to benzene; thus the rate of electrophilic aromatic substitution decreases.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(c)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Deactivating groups destabilize the arenium ion intermediate. Activating groups stabilize the arenium ion intermediate by participation of lone pair on the atom of the substituent in resonance.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given pair of compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(d)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished relative to hydrogen; thus, the rate of electrophilic aromatic substitution decreases. Electron-withdrawing group is a deactivator.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
In the given pair of compounds, the
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(e)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Electron-withdrawing group withdraws electron density from the ring, so the driving force for the aromatic ring to attack the electrophile is diminished; thus the rate of electrophilic aromatic substitution decreases. Electron-withdrawing group is a deactivator.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The Cl is a deactivating group. In the compound having two Cl atoms, the reaction is slower than the reaction in that with one atom. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
Presence of two deactivating groups decreases the rate of electrophilic aromatic substitution than that of one group.
(f)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. Activating groups stabilize the arenium ion intermediate by participation of lone pair on the atom of the substituent in resonance. Deactivating groups destabilize the arenium ion intermediate.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as activator or deactivator.
(g)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. The rate of electrophilic aromatic substitution reaction is increased by strong activating group.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
The compound on the left has OH groups that are strong activating groups. The CH3 group is a weak activator. The rate of electrophilic aromatic substitution reaction is increased by strong activating group. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
The compound that will undergo electrophilic aromatic substitution faster is determined by identifying substituents as a weak, moderate, or strong activator or deactivator.
(h)
Interpretation:
For the given pair of aromatic compounds, the compound that will undergo electrophilic aromatic substitution faster is to be determined.
Concept introduction:
Activating groups speed up an electrophilic aromatic substitution reaction because they stabilize the arenium ion intermediate that is produced. As the number of activating group to the ring increases, the rate of electrophilic aromatic substitution reaction increases.

Answer to Problem 23.43P
The compound that will undergo electrophilic aromatic substitution faster is shown below:
Explanation of Solution
The given pair of compounds is
Both compounds above have activating groups. The compound on the right has two activating groups. Two activating groups to the benzene ring increase the rate of electrophilic aromatic substitution reaction. Therefore, the compound that will undergo electrophilic aromatic substitution faster is as shown below:
Presence of two deactivating groups decreases the rate of electrophilic aromatic substitution than that of one group.
Want to see more full solutions like this?
Chapter 23 Solutions
Organic Chemistry: Principles And Mechanisms
- + C8H16O2 (Fatty acid) + 11 02 → 8 CO2 a. Which of the above are the reactants? b. Which of the above are the products? H2o CO₂ c. Which reactant is the electron donor? Futty acid d. Which reactant is the electron acceptor? e. Which of the product is now reduced? f. Which of the products is now oxidized? 02 #20 102 8 H₂O g. Where was the carbon initially in this chemical reaction and where is it now that it is finished? 2 h. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forward→ Acetyl-CoA + 3NAD+ + 1FAD + 1ADP 2CO2 + CoA + 3NADH + 1FADH2 + 1ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? d. Which reactants are the electron acceptors? e. Which of the products are now reduced? f. Which product is now oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished?arrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. OCH 3 (Choose one) OH (Choose one) Br (Choose one) Explanation Check NO2 (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Aarrow_forward
- For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects O donating O withdrawing O no inductive effects Resonance Effects Overall Electron-Density ○ donating ○ withdrawing O no resonance effects O electron-rich O electron-deficient O similar to benzene Cl O donating O withdrawing ○ donating ○ withdrawing O no inductive effects O no resonance effects O Explanation Check O electron-rich O electron-deficient similar to benzene X © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forwardIdentifying electron-donating and For each of the substituted benzene molecules below, determine the inductive and resonance effects the substituent will have on the benzene ring, as well as the overall electron-density of the ring compared to unsubstituted benzene. Molecule Inductive Effects NH2 ○ donating NO2 Explanation Check withdrawing no inductive effects Resonance Effects Overall Electron-Density ○ donating O withdrawing O no resonance effects O donating O withdrawing O donating withdrawing O no inductive effects Ono resonance effects O electron-rich electron-deficient O similar to benzene O electron-rich O electron-deficient O similar to benzene olo 18 Ar 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardRank each of the following substituted benzene molecules in order of which will react fastest (1) to slowest (4) by electrophilic aromatic substitution. Explanation Check Х (Choose one) OH (Choose one) OCH3 (Choose one) OH (Choose one) © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Assign R or S to all the chiral centers in each compound drawn below porat bg 9 Br Brarrow_forwarddescrive the energy levels of an atom and howan electron moces between themarrow_forwardRank each set of substituents using the Cahn-Ingold-Perlog sequence rules (priority) by numbering the highest priority substituent 1.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





