Concept explainers
(a)
Interpretation:
The mass percent of C, H and O in cellulose needs to be determined.
Concept introduction:
Cellulose is present in plant cell wall and is a polysaccharide consists of several glucose units bind together.
Mass percent of an atom present in the sample can be determined by dividing mass of atoms present in the monomer to the overall mass of the monomer unit and multiplying the overall result with 100%.
For example, the mass percent of x g of an atom present in the y g of monomer unit can be determined as:

Answer to Problem 17QAP
Mass percent of C in
Mass percent of H in polymer is 7.66 %.
Mass percent of O in polymer is 54.34 %.
Explanation of Solution
Cellulose is a polyssaccharide which consists of several units of glucose joined through glycosidic linkage.
Molecular formula of glucose is C6 H12 O5.
Molar mass of monomer unit glucose in cellulose can be calculated as follows:
Putting the values,
There are 6 C in a monomer unit of cellulose.
Now, molar mass of C in a monomer
Thus, the mass percent of C can be calculated as:
Putting the values,
Thus, mass percent of C in polymer is 42.46 %.
There are 12 H in a monomer unit of cellulose.
Now, molar mass of H in a monomer
Mass percent of H can be calculated as follows:
Putting the values,
Thus, mass percent of H in polymer is 7.66 %.
There are 6 O in a monomer unit of cellulose.
Now, molar mass of O in a monomer
The mass percent of O can be calculated as:
Putting the values,
Thus, mass percent of O in polymer is 54.34 %.
(b)
Interpretation:
The molar mass of the cellulose needs to be determined.
Concept introduction:
Cellulose is present in plant cell wall and is a polysaccharide consists of several glucose units in it.
The molar mass of any compound can be calculated by taking sum of molar masses of all the atoms present in that compound.
For a molecular formula of compound Cx Hy Oz, the molar mass can be calculated as follows:
Molar mass of compound = (Number of C)

Answer to Problem 17QAP
Molar mass of cellulose is
Explanation of Solution
The molecular formula of glucose is C6 H12 O6 which is linked with other glucose molecule through glycosidic linkage to form polysaccharides. The cellulose molecule is formed from the linkage of more than 100 glucose units.
Cellulose is a polyssaccharide which consists of several units of glucose joined through glycosidic linkage.
Molecular formula of glucose is C6 H12 O6
Thus, its molar mass can be calculated as follows:
Molar mass of monomer unit glucose in cellulose = (Number of C)
Putting the values,
Now,
Molar mass of cellulose = 10000
Thus, the molar mass of cellulose will be:
Thus, the molar mass of cellulose is
Want to see more full solutions like this?
Chapter 23 Solutions
OWLv2 for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 1 term (6 months)
- C 5 4 3 CI 2 the Righ B A 5 4 3 The Lich. OH 10 4 5 3 1 LOOP- -147.52 T 77.17 -45.36 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm B -126.25 77.03 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm 200 190 180 170 160 150 140 130 120 110 100 90 80 TO LL <-50.00 70 60 50 40 30 20 10 ppm 45.06 30.18 -26.45 22.36 --0.00 45.07 7.5 1.93 2.05 -30.24 -22.36 C A 7 8 5 ° 4 3 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 8 5 4 3 ཡི་ OH 10 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 5 4 3 2 that th 7 I 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 115 2.21 4.00 1.0 ppm 6.96 2.76 5.01 1.0 ppm 6.30 1.00arrow_forwardCurved arrows were used to generate the significant resonance structure and labeled the most significant contribute. What are the errors in these resonance mechanisms. Draw out the correct resonance mechanisms with an brief explanation.arrow_forwardWhat are the: нсе * Moles of Hice while given: a) 10.0 ml 2.7M ? 6) 10.ome 12M ?arrow_forward
- You are asked to use curved arrows to generate the significant resonance structures for the following series of compounds and to label the most significant contributor. Identify the errors that would occur if you do not expand the Lewis structures or double-check the mechanisms. Also provide the correct answers.arrow_forwardhow to get limiting reactant and % yield based off this data Compound Mass 6) Volume(mL Ben zaphone-5008 ne Acetic Acid 1. Sam L 2-propanot 8.00 Benzopin- a col 030445 Benzopin a Colone 0.06743 Results Compound Melting Point (°c) Benzopin acol 172°c - 175.8 °c Benzoping to lone 1797-180.9arrow_forwardAssign ALL signals for the proton and carbon NMR spectra on the following pages.arrow_forward
- 7.5 1.93 2.05 C B A 4 3 5 The Joh. 9 7 8 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 0.86 OH 10 4 3 5 1 2 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 9 7 8 CI 4 3 5 1 2 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 2.21 4.00 1.5 2.00 2.07 1.0 ppm 2.76arrow_forwardAssign the functional group bands on the IR spectra.arrow_forwardFind the pH of a 0.120 M solution of HNO2. Find the pH ignoring activity effects (i.e., the normal way). Find the pH in a solution of 0.050 M NaCl, including activityarrow_forward
- Please help me answer these three questions. Required info should be in data table.arrow_forwardDraw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each stereogenic center. Omit any byproducts. Bri CH3CH2O- (conc.) Draw the major organic product or products.arrow_forwardTartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH. How many mL of NaOH are needed to reach the first equivalence point? How many mL of NaOH are needed to reach the second equivalence point?arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning




