(a)
Interpretation:
The effects of increasing the concentration of tissue fructose-1,6-bisphosphate on the rates of gluconeogenesis and glycogen
Concept Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two-enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(b)
Interpretation:
The effects of increasing the concentration of blood glucose on the rates of gluconeogenesis and glycogen metabolism should be explained.
Concept Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(c)
To Explain:
The effects of increasing the concentration of blood insulin on the rates of gluconeogenesis and glycogen metabolism should be explained.
Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(d)
To Explain:
The effects of increasing the amount of blood glucagon on the rates of gluconeogenesis and glycogen metabolism should be explained.
Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(e)
Interpretation:
The effects of decreasing levels of tissue ATP on the rates of gluconeogenesis and glycogen metabolism should be explained.
Concept Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(f)
Interpretation:
The effects of increasing the concentration of tissue AMP on the rates of gluconeogenesis and glycogen metabolism should be explained.
Concept Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
(g)
Interpretation:
The effects of decreasing the concentration of fructose-6-phosphate on the rates of gluconeogenesis and glycogen metabolism should be explained.
Concept Introduction:
Most of the reactions in Glycolysis and Gluconeogenesis reactions are taken place in the cytosol. Therefore, unless there is a metabolic regulation, glycolytic degradation of glucose and gluconeogenic synthesis of glucose will occur simultaneously without a benefit to the cell with huge consumption of ATP. This scenario is controlled by a reciprocal control system which inhibits glycolysis when gluconeogenesis is active and vice versa.
Glucose produced by glycogen metabolism is also an energy source for muscle contraction. Regulation of glycogen metabolism is also a reciprocal control of the two enzyme glycogen phosphorylase and glycogen synthase. Regulation is achieved via both allosteric regulation and covalent modification.
Trending nowThis is a popular solution!
Chapter 22 Solutions
BIOCHEMISTRY (HARDBACK) W/ACCESS CODE
- Biochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forwardBiochemistry What is the importance of the glucose-alanine cycle?arrow_forward
- Biochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forwardBiochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forward
- Biochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forwardBiochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forward
- Draw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forwardIdentify the type of bond in the following disaccharides. Number your carbons to show work. Explain your answer thoroughly. Draw the number of carbons also.arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage Learning