Concept explainers
Review. Rail guns have been suggested for launching projectiles into space without chemical rockets. A tabletop model rail gun (Fig. P22.76) consists of two long, parallel, horizontal rails ℓ = 3.50 cm apart, bridged by a bar of mass m = 3.00 g that is free to slide without friction. The rails and bar have low electric resistance, and the current is limited to a constant I = 24.0 A by a power supply that is far to the left of the figure, so it has no magnetic effect on the bar. Figure P22.76 shows the bar at rest at the midpoint of the rails at the moment the current is established. We wish to find the speed with which the bar leaves the rails after being released from the midpoint of the rails. (a) Find the magnitude of the magnetic field at a distance of 1.75 cm from a single long wire carrying a current of 2.40 A. (b) For purposes of evaluating the magnetic field, model the rails as infinitely long. Using the result of part (a), find the magnitude and direction of the magnetic field at the midpoint of the bar. (c) Argue that this value of the field will be the same at all positions of the bar to the right of the midpoint of the rails. At other points along the bar, the field is in the same direction as at the midpoint, but is larger in magnitude. Assume the average effective magnetic field along the bar is five times larger than the field at the midpoint. With this assumption, find (d) the magnitude and (e) the direction of the force on the bar. (f) Is the bar properly modeled as a particle under constant acceleration? (g) Find the velocity of the bar after it has traveled a distance d = 130 cm to the end of the rails.
Figure P22.76
(a)
The magnitude of the magnetic field.
Answer to Problem 76P
The magnitude of the magnetic field is
Explanation of Solution
Write the expression for the magnetic field for a conductor,
Here,
Conclusion:
Substitute
The magnitude of the magnetic field is
(b)
The magnitude and the direction of the magnetic field from the mid- point of the bar.
Answer to Problem 76P
The magnitude of the field at the mid-point of the bar is
Explanation of Solution
From the figure1 the current is diverted through the bar, here only half of each rails carriers currents, so the field produce by each rail are half of the infinitely long wire produces.
Conclusion:
Write the expression for the magnetic field produced by the conductor
Here,
Substitute
Write the expression for the magnetic field produced by the conductor
Here,
Substitute
The total magnetic field at the point
Therefore, the magnitude of the field at the mid-point of the bar is
(c)
The reason for the value of the magnetic field will be same at all position of the bar to the right of the midpoint of the rails.
Answer to Problem 76P
The rail is long so the location of the bar does not depend upon the length of the rail to the right side.
Explanation of Solution
Here, it is assumed as the rail is infinitely long so, the length of the rail to the right of the bar does not depend upon the location of the bar.
Therefore the magnetic field will be same at all position of the bar to the right of the midpoint of the rails.
Conclusion:
The rail is long so the location of the bar does not depend upon the length of the rail to the right side.
(d)
The magnitude of the force on the bar.
Answer to Problem 76P
The magnitude of the force on the bar is
Explanation of Solution
Write the expression for the magnetic field in a wire,
Here,
Conclusion:
Substitute
The magnitude of the force on the bar is
(e)
The direction of the force on the bar.
Answer to Problem 76P
The direction of the force on the bar is in positive
Explanation of Solution
Write the expression for the magnetic field in a wire,
Here,
Substitute
Conclusion:
The force vector on the bar is
(f)
Whether the bar is properly modeled as a particle under constant acceleration.
Answer to Problem 76P
Yes, the bar will move with constant acceleration of magnitude
Explanation of Solution
Write the expression to calculate the acceleration of bar,
Here,
Conclusion:
Substitute
Therefore, the bar will move with constant acceleration of magnitude
(g)
The velocity of the bar.
Answer to Problem 76P
The velocity of the bar is
Explanation of Solution
Write the equation for velocity of the bar,
Here,
Conclusion:
Substitute
The velocity of the bar is
Want to see more full solutions like this?
Chapter 22 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- A box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- A toy car speeds up at 1.0 m/s2 while rolling down a ramp, and slows down at a rate of 2.0 m/s2 while rolling up the same ramp. What is the slope of the ramp in degrees? Grade in %? The friction coefficient?arrow_forwardPlz solution should be complete No chatgpt pls will upvote .arrow_forwardA box with friction coefficient of 0.2 rests on a 12 foot long plank of wood. How high (in feet) must one side of the plank be lifted in order for the box to begin to slide?arrow_forward
- A hydrogen atom has just a single electron orbiting the nucleus, which happens to be a single proton without any neutrons. The proton is positively charged, the electron negatively, but both with the same magnitude of charge given by e=1.602x10-19C. The mass of an electron is 9.11x10-31kg, and the proton is 1.67x10-27kg. Find the ratio of the electrostatic to the gravitational force of attraction between the electron and the proton in hydrogen. \arrow_forwardWhat is the third law pair to the normal force as you sit in a chair? What effect does the sun's pull on earth have in terms of third law pairs?arrow_forwardUsing Newton's 2nd law, show that all objects subject to the pull of gravity alone should fall at the same rate. What is that rate?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning