Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 76P
For the rod of the preceding problem, (a) find an expression for the magnitude of the electric field in the perpendicular bisecting plane as a function of the distance r from the rod center, (b) Show that your expression reduces to an expected result when r >> L,. (c) What’s the direction of the field?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniformly charged rod of length L and total charge Q lies along the x axis as shown in in the figure below. (Use the following as necessary: Q, L, d, and ke.)
(a) Find the components of the electric field at the point P on the y axis a distance d from the origin.
(b) What are the approximate values of the field components when d >> L?
A uniformly charged rod of length L and total charge Q lies along the x axis as shown in in the figure below. (Use the following as necessary: Q, L, d, and k.)
E₁=
(a) Find the components of the electric field at the point P on the y axis a distance d from the origin.
Ex=
d
Ex~
L
Ey~
(b) What are the approximate values of the field components when d >> L?
0
X
X
Explain why you would expect these results.
can you answer this question please, but also can you explain to me how to arrange the sings for the formula to find the magnitude of the electric field
thank you
Chapter 22 Solutions
Essential University Physics (3rd Edition)
Ch. 22.1 - What would happen to the potential difference Vab...Ch. 22.1 - (1) A proton (charge e), (2) an alpha particle...Ch. 22.1 - The figure shows three straight paths AB of the...Ch. 22.2 - You measure a potential difference of 50 V between...Ch. 22.2 - The figure shows three paths from infinity to a...Ch. 22.3 - The figure shows cross sections through two...Ch. 22 - Why can a bird perch on a high-voltage power line...Ch. 22 - One proton is accelerated from rest by a uniform...Ch. 22 - Would a free electron move toward higher or lower...Ch. 22 - The electric Field at the center of a uniformly...
Ch. 22 - Must the potential be zero at any point where the...Ch. 22 - Must the electric field he zero at any point where...Ch. 22 - The potential is constant throughout an entire...Ch. 22 - In considering the potential of an infinite flat...Ch. 22 - Cherry picker trucks for working on power lines...Ch. 22 - Can equipotential surfaces intersect? Explain.Ch. 22 - Is the potential at the center of a hollow,...Ch. 22 - A solid sphere contains positive charge uniformly...Ch. 22 - Two equal hut opposite charges form a dipole....Ch. 22 - The electric potential in a region increases...Ch. 22 - How much work does it take to move a 50-C charge...Ch. 22 - The potential difference between the two sides of...Ch. 22 - It takes 45 J to move a 15-mC charge from point A...Ch. 22 - Show that 1 V/m is the same as 1 N/C.Ch. 22 - Find the magnitude of the potential difference...Ch. 22 - A charge of 3.1 C moves from the positive to the...Ch. 22 - A proton, an alpha particle (a bare helium...Ch. 22 - The potential difference across a typical cell...Ch. 22 - An electric field is given by E= E0, where E0 is a...Ch. 22 - The classical picture of the hydrogen atom has the...Ch. 22 - The potential at the surface of a 10-cm-radius...Ch. 22 - Youre developing a switch for high-voltage power...Ch. 22 - A 3.5-cm-diameter isolated metal sphere carries...Ch. 22 - In a uniform electric field, equipotential planes...Ch. 22 - Figure 22.22 shows a plot of potential versus...Ch. 22 - figure 22.23 shows some equipotentials in the x-y...Ch. 22 - The electric potential in a region is given by V =...Ch. 22 - Dielectric breakdown of air occurs at fields of 3...Ch. 22 - Youre an automotive engineer working on the...Ch. 22 - A large metal sphere has three times the diameter...Ch. 22 - Two points A and B lie 15 cm apart in a uniform...Ch. 22 - The electric field within a cell membrane is...Ch. 22 - Whats the potential difference between the...Ch. 22 - Whats the charge on an ion that gains 1.61015 J...Ch. 22 - Two Hat metal plates are a distance d apart, where...Ch. 22 - An electron passes point A moving at 6.5 Mm/s. At...Ch. 22 - A 5.0-g object carries 3.8 C. It acquires speed v...Ch. 22 - Points A and B lie 32.0 cm apart on a line...Ch. 22 - A sphere of radius R carries negative charge of...Ch. 22 - Proton-beam therapy can be preferable to X rays...Ch. 22 - A thin spherical shell has radius R and total...Ch. 22 - A solid sphere of radius R carries charge Q...Ch. 22 - Find the potential as a function of position in...Ch. 22 - Your radio station needs a new coaxial cable to...Ch. 22 - The potential difference between the surface of a...Ch. 22 - Three equal charges q form an equilateral triangle...Ch. 22 - A charge +Q lies at the origin and 3Q at x = a....Ch. 22 - Two identical charges q lie on the x-axis at a....Ch. 22 - A dipole of moment p = 2.9 nC m consists of two...Ch. 22 - A thin plastic rod 20 cm long carries 3.2 nC...Ch. 22 - A thin ring of radius R carries charge 3Q...Ch. 22 - The potential at the center of a uniformly charged...Ch. 22 - The annulus shown in Fig. 22.25 carries a uniform...Ch. 22 - The potential in a region is given by V = axy,...Ch. 22 - Use Equation 22.6 to calculate the electric field...Ch. 22 - Use the result of Example 22.6 to determine the...Ch. 22 - The electric potential in a region is given by V =...Ch. 22 - Two metal spheres each 1.0 cm in radius are far...Ch. 22 - Two 5.0-cm-diameter conducting spheres are 8.0 m...Ch. 22 - A 2.0-cm-radius metal sphere carries 75 nC and is...Ch. 22 - A sphere of radius R carries a nonuniform but...Ch. 22 - The potential as a function of position in a...Ch. 22 - A conducting sphere 5.0 cm in radius carries 60...Ch. 22 - INTERPRET Ibis problem deals with the electric...Ch. 22 - The potential on the axis of a uniformly charged...Ch. 22 - A uranium nucleus (mass 238 u, charge 92e) decays,...Ch. 22 - The Taser, an ostensibly nonlethal weapon used by...Ch. 22 - Using the dipole potential at points far from a...Ch. 22 - Measurements of the potential at points on the...Ch. 22 - Find an equation describing the V = 0...Ch. 22 - A thin rod of length L carries charge Q...Ch. 22 - For the rod of the preceding problem, (a) find an...Ch. 22 - A disk of radius a carries nonuniform surface...Ch. 22 - An open ended cylinder of radius a and length 2a...Ch. 22 - A line charge extends along the x-axis from L/2 to...Ch. 22 - Repeat Problem 79 for the charge distribution =...Ch. 22 - Youre sizing a new electric transmission line, and...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...Ch. 22 - bio Standard electrocardiography measures...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Q1. Which wavelength of light has the highest frequency?
a) 10 nm
b) 10 mm
c) 1 nm
d) 1 mm
Chemistry: A Molecular Approach (4th Edition)
6. When you drive fast on the highway with muddy tires, you can hear the mud flying off the tires into your whe...
College Physics: A Strategic Approach (3rd Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Q1. Which substance is being oxidized in the reaction?
a.
b.
c.
d. none of the above
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The charge per unit length on the thin rod shown below is . What is the electric field at the point P? (Hint: Solve this problem by first considering the electric field dE at P due to a small segment dx of the rod, which contains charge dq=dx . Then find the net field by integrating dE over the length of the rod.)arrow_forwardThe circular are shown below carries a charge per unit length =0 cos . Where is measured from the x-axis. What is the electric field at the origin?arrow_forwardTwo non-conducting spheres of radii R1 and R2 are uniformly charged with charge densities p1 and p2 , respectively. They are separated at center-to-center distance a (see below). Find the electric field at point P located at a distance r from the center of sphere 1 and is in the direction from the line joining the two spheres assuming their charge densities are not affected by the presence of the other sphere. (Hint: Work one sphere at a time and use the superposition principle.)arrow_forward
- What is the electric field at the midpoint M of the hypotenuse of the triangle shown below?arrow_forwardPoint charges q1=50C and q2=25C are placed 1.0 m apart. (a) What is the electric field at a point midway between them? (b) What is the force on a charge q3=20C situated there?arrow_forwardA spherical lubber balloon carries a total charge Q distributed uniformly over its surface. At r=0 , the radius of the balloon is R. The balloon is then slowly inflated until its radius reaches 2R at the time t0 . Determine the electric field due to this charge as a function of time (a) at the surface of the balloon, (b) at the surface of radius R, and (c) at the surface of radius 2R. Ignore any effect on the electric field due to the material of the balloon and assume that the radius increases uniformly with time.arrow_forward
- A particle of charge 2.0108C experiences an upward force of magnitude 4.0106N when it is placed in a particular point in an electric field. (a) What is the electric field at that point? (b) If a charge q=1.0108C is placed there, what is the force on it?arrow_forwardCalculate the electric field due to a uniformly charged rod of length L, aligned with the x-axis with one end at the origin; at a point P on the z-axis.arrow_forwardWhat are the stable orientation(s) for a dipole in an external electric field? What happens if the dipole is slightly peltulbed from these orientations?arrow_forward
- What is the electric field at a point where the force on a 2.0106C chargeis (4.0i6.0j)106N ?arrow_forwardA particle of charge q and mass m is placed at the center of a uniformly charged ring of total charge Q and radius R. The particle is displaced a small distance along the axis perpendicular to the plane of the ring and released. Assuming that the particle is constrained to move along the axis, show that the particle oscillates in simple harmonic motion with a frequency f=12qQ40mR3.arrow_forwardConsider a uranium nucleus to be sphere of radius R=7.41015 m with a charge of 92e distributed uniformly throughout its volume. (a) is the electric force exerted on an electron when it is 3.01015 m from the center of the nucleus? (b) What is the acceleration of the electron at this point?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY