E-Filing The table shows the numbers of tax returns (in millions) made through e-file from 2007 through 2014. Let f t represent the number of tax returns made through e-file in the year t . (a) Find f 2014 − f 2007 2014 − 2007 and interpret the result in the context of the problem. (b) Make a scatter plot of the data. (c) Find a linear model for the data algebraically. Let N represent the number of tax returns made through e-file and let t = 7 correspond to 2007. (d) Use the model found in part (c) to complete the table. (e) Compare your results from part (d) with the actual data. (f) Use a graphing utility to find a linear model for the data. Let x = 7 correspond to 2007. How does the model you found in part (c) compare with the model given by the graphing utility?
E-Filing The table shows the numbers of tax returns (in millions) made through e-file from 2007 through 2014. Let f t represent the number of tax returns made through e-file in the year t . (a) Find f 2014 − f 2007 2014 − 2007 and interpret the result in the context of the problem. (b) Make a scatter plot of the data. (c) Find a linear model for the data algebraically. Let N represent the number of tax returns made through e-file and let t = 7 correspond to 2007. (d) Use the model found in part (c) to complete the table. (e) Compare your results from part (d) with the actual data. (f) Use a graphing utility to find a linear model for the data. Let x = 7 correspond to 2007. How does the model you found in part (c) compare with the model given by the graphing utility?
Solution Summary: The author analyzes the value of f(2014)-f
E-Filing The table shows the numbers of tax returns (in millions) made through e-file from 2007 through 2014. Let
f
t
represent the number of tax returns made through e-file in the year
t
.
(a) Find
f
2014
−
f
2007
2014
−
2007
and interpret the result in the context of the problem.
(b) Make a scatter plot of the data.
(c) Find a linear model for the data algebraically. Let
N
represent the number of tax returns made through e-file and let
t
=
7
correspond to 2007.
(d) Use the model found in part (c) to complete the table.
(e) Compare your results from part (d) with the actual data.
(f) Use a graphing utility to find a linear model for the data. Let
x
=
7
correspond to 2007. How does the model you found in part (c) compare with the model given by the graphing utility?
Definition Definition Representation of the direction and degree of correlation in graphical form. The grouping of points that are plotted makes it a scatter diagram. A line can be drawn showing the relationship based on the direction of points and their distance from each other.
ے ملزمة احمد
Q (a) Let f be a linear map from a space X into a space Y and (X1,X2,...,xn) basis for X, show that fis one-to-
one iff (f(x1),f(x2),...,f(x) } linearly independent.
(b) Let X= {ao+ax₁+a2x2+...+anxn, a;ER} be a vector space over R, write with prove a hyperspace and a
hyperplane of X.
مبر خد احمد
Q₂ (a) Let M be a subspace of a vector space X, and A= {fex/ f(x)=0, x E M ), show that whether A is
convex set or not, affine set or not.
Write with prove an
application of Hahn-Banach theorem.
Show that every singleton set in a normed space X is closed and any finite set in X is closed (14M)
Let M be a proper subspace of a finite dimension vector space X over a field F show that
whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M
or not.
(b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L
prove convex subset of X and hyperspace of X.
Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and
A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that
gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA.
(b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there
Xiff there
exists fE X/10) and tE F such that M=(xE X/ f(x)=t).
(c) Show that the relation equivalent is an equivalence relation on set of norms on a space
X.
Q/(a)Let X be a finite dimension vector space over a field F and S₁,S2CX such that S₁SS2. Show that
whether (1) if S, is a base for X then base for X or not (2) if S2 is a base for X then S, is a base for X or not
(b) Show that every subspace of vector space is convex and affine set but the conevrse need not to be true.
allet M be a non-empty subset of a vector space X over a field F and x,EX. Show that M is a
hyperspace iff xo+ M is a hyperplane and xo€ xo+M.
bState Hahn-Banach theorem and write with prove an application about it.
Show that every singleten subset and finite subset of a normed space is closed.
Oxfallet f he a function from a normad roace YI
Show tha ir continuour aty.GYiff
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.