Maximum Volume An open box of maximum volume is made from a square piece of material 24 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). (a) The table shows the volumes V (in cubic centimeters) of the box for various heights x (in centimeters). Use the table to estimate the maximum volume. (b) Plot the points ( x , V ) from the table in part (a). Does the relation defined by the ordered pairs represent V as a function of x ? (c) Given that V is a function of x , write the function and determine its domain.
Maximum Volume An open box of maximum volume is made from a square piece of material 24 centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure). (a) The table shows the volumes V (in cubic centimeters) of the box for various heights x (in centimeters). Use the table to estimate the maximum volume. (b) Plot the points ( x , V ) from the table in part (a). Does the relation defined by the ordered pairs represent V as a function of x ? (c) Given that V is a function of x , write the function and determine its domain.
Solution Summary: The author explains how to determine the maximum volume of a square box for various heights using the table given below.
Maximum Volume An open box of maximum volume is made from a square piece of material
24
centimeters on a side by cutting equal squares from the corners and turning up the sides (see figure).
(a) The table shows the volumes
V
(in cubic centimeters) of the box for various heights
x
(in centimeters). Use the table to estimate the maximum volume.
(b) Plot the points
(
x
,
V
)
from the table in part (a). Does the relation defined by the ordered pairs represent
V
as a function of
x
?
(c) Given that
V
is a function of
x
, write the function and determine its domain.
learn.edgenuity
: C&C VIP
Unit Test
Unit Test Review Active
1
2
3
4
Which statement is true about the graph of the equation y = csc¯¹(x)?
There is a horizontal asymptote at y = 0.
उद
There is a horizontal asymptote at y = 2.
There is a vertical asymptote at x = 0.
O There is a vertical asymptote at x=-
R
Mark this and return
C
Save and Exit
emi
ے ملزمة احمد
Q (a) Let f be a linear map from a space X into a space Y and (X1,X2,...,xn) basis for X, show that fis one-to-
one iff (f(x1),f(x2),...,f(x) } linearly independent.
(b) Let X= {ao+ax₁+a2x2+...+anxn, a;ER} be a vector space over R, write with prove a hyperspace and a
hyperplane of X.
مبر خد احمد
Q₂ (a) Let M be a subspace of a vector space X, and A= {fex/ f(x)=0, x E M ), show that whether A is
convex set or not, affine set or not.
Write with prove an
application of Hahn-Banach theorem.
Show that every singleton set in a normed space X is closed and any finite set in X is closed (14M)
Let M be a proper subspace of a finite dimension vector space X over a field F show that
whether: (1) If S is a base for M then S base for X or not, (2) If T base for X then base for M
or not.
(b) Let X-P₂(x) be a vector space over polynomials a field of real numbers R, write with L
prove convex subset of X and hyperspace of X.
Q₂/ (a) Let X-R³ be a vector space over a over a field of real numbers R and
A=((a,b,o), a,bE R), A is a subspace of X, let g be a function from A into R such that
gla,b,o)-a, gEA, find fe X such that g(t)=f(t), tEA.
(b) Let M be a non-empty subset of a space X, show that M is a hyperplane of X iff there
Xiff there
exists fE X/10) and tE F such that M=(xE X/ f(x)=t).
(c) Show that the relation equivalent is an equivalence relation on set of norms on a space
X.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY