Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 61AP
To determine
The maximum (Carnot) efficiency of an engine that absorbs from a hot reservoir at
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Steam locomotives have an efficiency of 14.0% and operate with a hot steam temperature of 375°C.
(a) What would the cold reservoir temperature (in °C) be if this were a Carnot engine?
322.5
X °C
(b) What would the maximum efficiency of this steam engine be if its cold reservoir temperature were 150°C?
60
X %
Steam locomotives have an efficiency of 15.0% and operate with a hot steam temperature of 425°C.
(a) What would the cold reservoir temperature (in °C) be if this were a Carnot engine?
°C
(b) What would the maximum efficiency of this steam engine be if its cold reservoir temperature were 150°C?
%
Chapter 22 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 22.1 - The energy input to an engine is 4.00 times...Ch. 22.2 - The energy entering an electric heater by...Ch. 22.4 - Three engines operate between reservoirs separated...Ch. 22.6 - (a) Suppose you select four cards at random from a...Ch. 22.7 - An ideal gas is taken from an initial temperature...Ch. 22.7 - True or False: The entropy change in an adiabatic...Ch. 22 - Prob. 1OQCh. 22 - Prob. 2OQCh. 22 - Prob. 3OQCh. 22 - Of the following, which is not a statement of the...
Ch. 22 - Prob. 5OQCh. 22 - Prob. 6OQCh. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Prob. 9OQCh. 22 - Prob. 10OQCh. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - (a) Give an example of an irreversible process...Ch. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - What are some factors that affect the efficiency...Ch. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - Prob. 8PCh. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - Prob. 10PCh. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - Prob. 23PCh. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - A heat engine operates in a Carnot cycle between...Ch. 22 - Suppose you build a two-engine device with the...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - Prob. 44PCh. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - A steam engine is operated in a cold climate where...Ch. 22 - Prob. 59APCh. 22 - Prob. 60APCh. 22 - Prob. 61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 63APCh. 22 - Prob. 64APCh. 22 - Prob. 65APCh. 22 - Prob. 66APCh. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - Prob. 68APCh. 22 - Prob. 69APCh. 22 - Prob. 70APCh. 22 - Prob. 71APCh. 22 - Prob. 72APCh. 22 - Prob. 73APCh. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - Prob. 76APCh. 22 - Prob. 77APCh. 22 - Prob. 78APCh. 22 - A sample of an ideal gas expands isothermally,...Ch. 22 - Prob. 80APCh. 22 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Carnot engine operates in a Carnot cycle between a heat source at 550 and a heat sink at 20 . Find the efficiency of the Carnot engine.arrow_forwardWhich of the following is true for the entropy change of a system that undergoes a reversible, adiabatic process? (a) S 0 (b) S = 0 (c) S 0arrow_forwardA Carnot engine has an efficiency of 0.60. When the temperature of its cold reservoir the efficiency drops to 0.55. If initially Tc=27, determine (a) the constant value of Th and (b) the final value of Tc.arrow_forward
- A certain gasoline engine has an efficiency of 30.0%. What would the hot reservoir temperature be for a Carnot engine having that eficiency, if it operates with a cold reservoir temperature of 200°C?arrow_forwardAt point A in a Carnot cycle, 2.34 mol of a monatomic ideal gas has a pressure of 1 4000 kPa, a volume of 10.0 L, and a temperature of 720 K. The gas expands isothermally to point B and then expands adiabatically to point C, where its volume is 24.0 L. An isothermal compression brings it to point D, where its volume is 15.0 L. An adiabatic process returns the gas to point A. (a) Determine all the unknown pressures, volumes, and temperatures as you f ill in the following table: (b) Find the energy added by heat, the work done by the engine, and the change in internal energy for each of the steps A B, B C, C D, and D A (c) Calculate the efficiency Wnet/|Qk|. (d) Show that the efficiency is equal to 1 - TC/TA, the Carnot efficiency.arrow_forwardSteam locomotives have an efficiency of 17.0% and operate with a hot steam temperature of 425C. (a) What would the cold reservoir temperature be if this were a Carnot engine? (b) What would the maximum eficiency of this steam engine be if its cold reservoir temperature were 150C ?arrow_forward
- How could you design a Carnot engine with 100% efficiency?arrow_forwardAn idealized diesel engine operates in a cycle known as the air-standard diesel cycle shown in Figure P18.48. Fuel is sprayed into the cylinder at the point of maximum compression, B. Combustion occurs during the expansion B C, which is modeled as an isobaric process. Show that the efficiency of an engine operating in this idealized diesel cycle is e=11(TDTATCTB) Figure P18.48.arrow_forwardShow that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forward
- Of the following, which is not a statement of the second law of thermodynamics? (a) No heat engine operating in a cycle can absorb energy from a reservoir and use it entirely to do work, (b) No real engine operating between two energy reservoirs can be more efficient than a Carnot engine operating between the same two reservoirs, (c) When a system undergoes a change in state, the change in the internal energy of the system is the sum of the energy transferred to the system by heat and the work done on the system, (d) The entropy of the Universe increases in all natural processes, (e) Energy will not spontaneously transfer by heat from a cold object to a hot object.arrow_forwardTrue or False: The entropy change in an adiabatic process must be zero because Q = 0.arrow_forwardA 1.00-mol sample of an ideal monatomic gas is taken through the cycle shown in Figure P18.63. The process AB is a reversible isothermal expansion. Calculate (a) the net work done by the gas, (b) the energy added to the gas by heat, (c) the energy exhausted from the gas by heat, and (d) the efficiency of the cycle. (e) Explain how the efficiency compares with that of a Carnot engine operating between the same temperature extremes. Figure P18.63arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY