Concept explainers
If one hydrogen in a hydrocarbon is replaced by a halogen
a. n-pentane
b. 2-methylbutane
c. 2,4-dimethylpentane
d. methylcyclobutane
(a)
Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in n-pentane is replaced by a chlorine atom.
Answer to Problem 49E
Answer
Three isomers are obtained when one hydrogen atom of n-pentane is replaced by a chlorine atom.
Explanation of Solution
Explanation
The isomer is
The given compound n-pentane has five carbon atoms in the longest carbon chain. When hydrogen of first carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 1
The isomer is
The given compound n-pentane has five carbon atoms in the longest carbon chain. When hydrogen of second carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 2
The parent chain contains five carbon atom and chlorine group is attached to second carbon.
The compound
The isomer is
The given compound n-pentane have five carbon atoms in the longest carbon chain. When hydrogen of third carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 3
The compound
(b)
Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen atom in
Answer to Problem 49E
Answer
Nine isomers are obtained when one hydrogen of
Explanation of Solution
Explanation
The isomer is
In the given compound,
Figure 4
The isomer is
In the given compound,
Figure 5
The isomer is
In the given compound,
Figure 6
The isomer is
In the given compound,
Figure 7
The isomer is
In the given compound,
Figure 8
The isomer is
In the given compound,
Figure 9
The isomer is
In the given compound,
Figure 10
The isomer is
In the given compound,
Figure 11
The isomer is
In the given compound,
Figure 12
(c)
Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in
Answer to Problem 49E
Answer
Two isomers are obtained when one hydrogen of
Explanation of Solution
Explanation
The isomer is
The given compound
Figure 13
The isomer is
The given compound
Figure 14
(d)
Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in methylcyclobutane is replaced by a chlorine atom.
Answer to Problem 49E
Answer
Three isomers are obtained when one hydrogen of methylcyclobutane is replaced by a chlorine atom.
Explanation of Solution
Explanation
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the methyl group is replaced by chlorine atom, then the isomer named
Figure 15
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the second carbon of the ring is replaced by chlorine atom, then the isomer named
Figure 16
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the third carbon of the ring is replaced by chlorine atom, then the isomer named
Figure 17
Want to see more full solutions like this?
Chapter 22 Solutions
EBK CHEMISTRY
- Zeroth Order Reaction In a certain experiment the decomposition of hydrogen iodide on finely divided gold is zeroth order with respect to HI. 2HI(g) Au H2(g) + 12(9) Rate = -d[HI]/dt k = 2.00x104 mol L-1 s-1 If the experiment has an initial HI concentration of 0.460 mol/L, what is the concentration of HI after 28.0 minutes? 1 pts Submit Answer Tries 0/5 How long will it take for all of the HI to decompose? 1 pts Submit Answer Tries 0/5 What is the rate of formation of H2 16.0 minutes after the reaction is initiated? 1 pts Submit Answer Tries 0/5arrow_forwardangelarodriguezmunoz149@gmail.com Hi i need help with this question i am not sure what the right answers are.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning