
Concept explainers
If one hydrogen in a hydrocarbon is replaced by a halogen
a. n-pentane
b. 2-methylbutane
c. 2,4-dimethylpentane
d. methylcyclobutane
(a)

Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in n-pentane is replaced by a chlorine atom.
Answer to Problem 45E
Answer
Three isomers are obtained when one hydrogen atom of n-pentane is replaced by a chlorine atom.
Explanation of Solution
Explanation
The isomer is
The given compound n-pentane has five carbon atoms in the longest carbon chain. When hydrogen of first carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 1
The isomer is
The given compound n-pentane has five carbon atoms in the longest carbon chain. When hydrogen of second carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 2
The parent chain contains five carbon atom and chlorine group is attached to second carbon.
The compound
The isomer is
The given compound n-pentane have five carbon atoms in the longest carbon chain. When hydrogen of third carbon of n-pentane is replaced by chlorine atom, then the isomer named
Figure 3
The compound
(b)

Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen atom in
Answer to Problem 45E
Answer
Nine isomers are obtained when one hydrogen of
Explanation of Solution
Explanation
The isomer is
In the given compound,
Figure 4
The isomer is
In the given compound,
Figure 5
The isomer is
In the given compound,
Figure 6
The isomer is
In the given compound,
Figure 7
The isomer is
In the given compound,
Figure 8
The isomer is
In the given compound,
Figure 9
The isomer is
In the given compound,
Figure 10
The isomer is
In the given compound,
Figure 11
The isomer is
In the given compound,
Figure 12
(c)

Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in
Answer to Problem 45E
Answer
Two isomers are obtained when one hydrogen of
Explanation of Solution
Explanation
The isomer is
The given compound
Figure 13
The isomer is
The given compound
Figure 14
(d)

Interpretation: The number of isomers that can be obtained when one hydrogen atom in each of the given compound is replaced by a chlorine atom.
Concept introduction: Structural isomerism occurs when two compounds have same number of atoms but the spatial arrangement of the atoms is different from each other. If one hydrogen atom of a hydrocarbon is replaced by a halogen atom, the number of isomers that exists for the substituted compound depends on the number of types of hydrogen in the original hydrocarbon.
To determine: The number of isomers that can be obtained when one hydrogen in methylcyclobutane is replaced by a chlorine atom.
Answer to Problem 45E
Answer
Three isomers are obtained when one hydrogen of methylcyclobutane is replaced by a chlorine atom.
Explanation of Solution
Explanation
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the methyl group is replaced by chlorine atom, then the isomer named
Figure 15
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the second carbon of the ring is replaced by chlorine atom, then the isomer named
Figure 16
The isomer is
In the given compound methylcyclobutane, the ring of four carbon atoms is considered as the parent chain. Methyl group is attached at first carbon. When hydrogen of the third carbon of the ring is replaced by chlorine atom, then the isomer named
Figure 17
Want to see more full solutions like this?
Chapter 22 Solutions
Lab Manual For Zumdahl/zumdahl's Chemistry, 9th
- Predict the intermediate 1 and final product 2 of this organic reaction: NaOMe H+ + 1 2 H H work up You can draw 1 and 2 in any arrangement you like. Note: if either 1 or 2 consists of a pair of enantiomers, just draw one structure using line bonds instead of 3D (dash and wedge) bonds at the chiral center. Click and drag to start drawing a structure. X $ dmarrow_forwardPredict the major products of this organic reaction: 1. NaH (20°C) 2. CH3Br ? Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. G Crarrow_forwardPredict the major products of this organic reaction: 1. LDA (-78°C) ? 2. Br Some notes: • Draw only the major product, or products. You can draw them in any arrangement you like. . • Be sure to use wedge and dash bonds where necessary, for example to distinguish between major products that are enantiomers. • If there are no products, just check the box under the drawing area. No reaction. Click and drag to start drawing a structure. Xarrow_forward
- Please draw the structuresarrow_forwardDraw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 0 1. Eto 1. Eto- 1 2 2. MeBr 2. EtBr H3O+ A 3 You can draw the three structures in any arrangement you like. Explanation Check Click and drag to start drawing a structure.arrow_forwardDraw the missing intermediate 1 and final product 2 of this synthesis: 1. MeO- H3O+ 1 2 2. PrBr Δ You can draw the two structures in any arrangement you like. Click and drag to start drawing a structure.arrow_forward
- What is the differences between: Glyceride and phosphoglyceride Wax and Fat Soap and Fatty acid HDL and LDL cholesterol Phospho lipids and sphingosine What are the types of lipids? What are the main lipid components of membrane structures? How could lipids play important rules as signaling molecules and building units? The structure variety of lipids makes them to play significant rules in our body, conclude breifly on this statement.arrow_forwardWhat is the differences between DNA and RNA for the following: - structure - function - type What is the meaning of: - replication - transcription - translation show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardWhat is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward
- What is the IP for a amino acid- give an example what are the types of amino acids What are the structures of proteins The N-Terminal analysis by the Edman method shows saralasin contains sarcosine at the N-terminus. Partial hydrolysis of saralasin with dilute hydrochloric acid yields the following fragments: Try-Val-His Sar-Arg-Val His-Pro-Ala Val- Tyr- Val Arg-Val-Tyr What is the structure of saralasin?arrow_forward> aw the missing intermediates 1 and 2, plus the final product 3, of this synthesis: 1. Eto 1. EtO¯ H3O+ 1 2 2. PrBr 2. PrBr Δ You can draw the three structures in any arrangement you like. 3 Click and drag to start drawing a structure. Explanation Check 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacarrow_forwardThere are various factors that affect an equilibrium. Give 3 of these factors and explain using examples andequations how an equilibrium is affected by these factors. Please remember that this is a communication question so that you are communicating your understanding of the factors that affect and equilibrium.arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




