In Exercise 17–36, use the Gauss-Jordan elimination method to find all solutions of the system of linear equations. { 2 x + 6 y + 6 z = 0 − 3 x − 10 y + z = 1 − x − 4 y + 3 z = 1 5 x + 6 y + 8 z = 9
In Exercise 17–36, use the Gauss-Jordan elimination method to find all solutions of the system of linear equations. { 2 x + 6 y + 6 z = 0 − 3 x − 10 y + z = 1 − x − 4 y + 3 z = 1 5 x + 6 y + 8 z = 9
Solution Summary: The author explains the Gauss-Jorden elimination method to calculate the solution of the system of linear equations.
Proof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.
By considering appropriate series expansions,
ex · ex²/2 . ¸²³/³ . . ..
=
= 1 + x + x² +……
when |x| < 1.
By expanding each individual exponential term on the left-hand side
and multiplying out, show that the coefficient of x 19 has the form
1/19!+1/19+r/s,
where 19 does not divide s.
Let
1
1
r
1+
+ +
2 3
+
=
823
823s
Without calculating the left-hand side, prove that r = s (mod 823³).
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.