Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 30AC
To determine
From the following options, an ear makes a “pop” sound as one descends in an elevator because:
Air is moving from the atmosphere into your eardrum.
Air is moving from your eardrum to the atmosphere.
Air is not moving into or out of your eardrum.
None of the above is correct.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
There are many movements manifested by particles of matter. In gases, the particles move rapidly. In liquids, particles are quite close together and move with random motion. So, how do particles move in solids?
a. particles move rapidly
b. particles move with random motion
c. particles moves rapidly in all directions
d. particles moves strongly and vibrate faster
Estimate the time required for oxygen to diffuse from our nose to our lungs. Assume the diffusion constant of oxygen in air is 2×10^(-5) m^2 s^(-1) and the distance from the nose to the lungs in a human is about 20 cm.
a.
0.1 min.
b.
17 min.
c.
21 min.
d.
0.01 min.
A scuba diver at a depth of 60m notices the bubbles he exhales have diameters of 1cm. Assume the surface tension and water temperature remains relatively constant. What diameter bubble should be expect at a depth of 15m?
A. 1.587 cm
B. 1.452 cm
C. 2.301 cm
D. 1.203 cm
Chapter 22 Solutions
Physical Science
Ch. 22 -
1. The science that studies the atmosphere and...Ch. 22 -
2. Up from the surface, 99 percent of the mass of...Ch. 22 - Prob. 3ACCh. 22 - Prob. 4ACCh. 22 - Prob. 5ACCh. 22 - Prob. 6ACCh. 22 - Prob. 7ACCh. 22 -
8. Atmospheric pressure is measured using...Ch. 22 -
9. Which molecules in the atmosphere absorb...Ch. 22 - Prob. 10AC
Ch. 22 - Prob. 11ACCh. 22 -
12. What is the layer of the atmosphere where...Ch. 22 - Prob. 13ACCh. 22 - Prob. 14ACCh. 22 - Prob. 15ACCh. 22 -
16. Ultraviolet radiation is filtered by
a. the...Ch. 22 - Prob. 17ACCh. 22 - Prob. 18ACCh. 22 - Prob. 19ACCh. 22 - Prob. 20ACCh. 22 - Prob. 21ACCh. 22 - Prob. 22ACCh. 22 - Prob. 23ACCh. 22 - Prob. 24ACCh. 22 -
25. The basic shapes of clouds do not...Ch. 22 - Prob. 26ACCh. 22 - Prob. 27ACCh. 22 - Prob. 28ACCh. 22 - Prob. 29ACCh. 22 - Prob. 30ACCh. 22 - Prob. 31ACCh. 22 - Prob. 32ACCh. 22 - Prob. 33ACCh. 22 - Prob. 34ACCh. 22 - Prob. 35ACCh. 22 - Prob. 36ACCh. 22 - Prob. 37ACCh. 22 - Prob. 38ACCh. 22 - Prob. 39ACCh. 22 - Prob. 40ACCh. 22 - Prob. 41ACCh. 22 - Prob. 42ACCh. 22 - Prob. 43ACCh. 22 -
44. Without adding or removing any water vapor, a...Ch. 22 - Prob. 45ACCh. 22 - Prob. 46ACCh. 22 - Prob. 47ACCh. 22 - Prob. 48ACCh. 22 - Prob. 1QFTCh. 22 - Prob. 2QFTCh. 22 - Prob. 3QFTCh. 22 - Prob. 4QFTCh. 22 - Prob. 5QFTCh. 22 -
6. Explain the relationship between air...Ch. 22 - Prob. 7QFTCh. 22 -
8. Provide an explanation for the observation...Ch. 22 - Prob. 9QFTCh. 22 - Prob. 10QFTCh. 22 - Prob. 11QFTCh. 22 - Prob. 12QFTCh. 22 - Prob. 13QFTCh. 22 -
1. Describe how you could use a garden hose and a...Ch. 22 - Prob. 2FFACh. 22 - Prob. 3FFACh. 22 -
4. Evaluate the requirement that differential...Ch. 22 - Prob. 5FFACh. 22 -
1. On the scale of a basketball, how thick, in...Ch. 22 -
2. If a piece of plastic food wrap is being...Ch. 22 - Prob. 3PEBCh. 22 - Prob. 4PEBCh. 22 - Prob. 5PEBCh. 22 -
6. If the atmospheric pressure in the eye of a...Ch. 22 -
7. A helium balloon at sea level had a volume of...Ch. 22 -
8. A helium balloon had a volume of 1.50 m3 when...Ch. 22 - Prob. 9PEBCh. 22 - Prob. 10PEBCh. 22 -
11. If the temperature on the edge of the Grand...Ch. 22 -
12. If the insolation of the Sun shining on...Ch. 22 -
13. If the insolation of the Sun shining on...Ch. 22 -
14. In the evening, a stick measuring 0.75 m...Ch. 22 -
15. If outside air with an absolute humidity of 4...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the average time required for an oxygen molecule to diffuse through a 0.200-mm-thick tear layer on the cornea. (b) How much time is required to diffuse 0.500 cm3 of oxygen to the cornea if its surface area is 1.00 cm2?arrow_forwardCalculate the gauge pressures inside 2.00-cm-radius bubbles of water, alcohol, and soapy water. Which liquid forms the most stable bubbles, neglecting any effects of evaporation?arrow_forwardIn the chapter on fluid mechanics, Bernoulli's equation for the flow of incompressible fluids was explained in terms of changes affecting a small volume dV of fluid. Such volumes are a fundamental idea in the study of the flow of compressible fluids such as gases as well. For the equations of hydrodynamics to apply, the mean free path must be much less than the linear size of such a volume, adV1/3 . For air in the stratosphere at a temperature of 220 K and a pressure of 5.8 kPa, how big should a be for it to be 100 times the mean free path? Take the effective radius of air molecules to be 1.881011 m, which is roughly correct for N2.arrow_forward
- During forced exhalation, such as when blowing up a balloon, the diaphragm and chest muscles create a pressure of 60.0 mm Hg between the lungs and chest wall. What force in newtons does this pressure create on the 600 cm2 surface area of the diaphragm?arrow_forwardThe density of air is 1.3 kg/m3 at sea level. From your knowledge of air pressure at ground level, estimate the height of the atmosphere. As a simplifying assumption, take the atmosphere to be of uniform density up to some height, after which the density rapidly falls to zero. (In reality, the density of the atmosphere decreases as we go up.) (This question is courtesy or Edward F. Redish. For more questions of this type, see http://www.physics.umd.edu/perg/.)arrow_forwardWhen two soap bubbles touch, the larger is inflated by the smaller until they form a single bubble. (a) What is the gauge pressure inside a soap bubble with a 1.50-cm radius? (b) Inside a 4.00-cm-radius soap bubble? (c) Inside the single bubble they form if no air is lost when they touch?arrow_forward
- In about 1657. Otto von Guericke, inventor of the air pump, evacuated a sphere made of two brass hemispheres (Fig. P9.89). Two teams of eight horses each could pull the hemispheres apart only on some trials and then with greatest difficulty, with the resulting sound likened to a cannon firing. Find the force F required to pull the thin-walled evacuated hemispheres apart in terms of R, the radius of the hemispheres, P the pressure inside the hemispheres, and atmospheric pressure P0. Figure P9.89arrow_forwardWhat is the ratio of the average distances that oxygen will diffuse in a given time in air and water? Why is this distance less in water (equivalently, why is D less in water)?arrow_forwardAssume it takes 7.00 minutes to fill a 30.0-gal gasoline tank. (a) Calculate the rate at which the tank is filled in gallons per second. (b) Calculate the rate at which the tank is filled in cubic meters per second. (c) Determine the time interval, in hours, required to fill a 1.00-m3 volume at the same rate. (1 U.S. gal = 231 in.3)arrow_forward
- Suppose you measure a standing person's blood pressure by placing the cuff on his leg 0.500 m below the heart. Calculate the pressure you would observe (in units of mm Hg) if the pressure at the heart were 120 over 80 mm Hg. Assume that there is no loss of pressure due to resistance in the circulatory system (a reasonable assumption, since major arteries are large).arrow_forward(a) What is the mass of a deep breath of air having a volume of 2.00 L? (b) Discuss the effect taking such a breath has on your body's volume and density.arrow_forwardDry air is primarily composed of nitrogen. In a classroom demonstration, a physics instructor pours 2.00 L of liquid nitrogen into a beaker. After the nitrogen evaporates, how much volume does it occupy if its density is equal to that of the dry air at sea level? Liquid nitrogen has a density of 808 kg/m3.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning