Physical Science
Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 22, Problem 12PEB

If the insolation of the Sun shining on concrete is 7.3 102 W/m2, what is the change in temperature of a 1.5 m2 by 5.0 cm thick layer of concrete in 1 hr? (Assume the albedo of the concrete is 0.55, the specific heat of concrete is 0.16 cal/gC°, and the density of concrete is 2.4 g/cm3.)

Expert Solution & Answer
Check Mark
To determine

The change in temperature of a 1.5 m2 by 5.0 cm thick layer of concrete in 1 hr.

Answer to Problem 12PEB

Solution:

14.76 °C

Explanation of Solution

Given data:

Insolation of the sun is 7.3×102 Wm2.

The albedo of the concrete is 0.55.

The area of the layer 1.5 m2.

Time is 1 hr.

Density of concrete is 2.4 gcm2.

Thickness of the layer is 5 cm.

Specific heat of concrete is 0.16 calgC°.

Formula used:

Write the equation for the incoming solar radiation by the reflected solar radiation to determine the albedo.

α=reflected solar radiationInsolation

Here, α is the insolation.

Write the equation for energy from the absorbed solar radiation:

absorbed energy=At(insolationreflected solar radiation)

Here, A is the area of the layer and t is time.

Write the formula for density.

ρ=mV

Here, m is the mass and V is the volume.

Write the formula for volume.

V=zA

Here, z is the thickness.

Write the formula for heat.

Q=mcΔT

Here, m is the mass, c is the specific heat and ΔT is the change in temperature.

Explanation:

Determine reflected radiation:

Recall the equation for the incoming solar radiation by the reflected solar radiation to determine the albedo, denoted by alpha.

α=reflected solar radiationincoming solar radiation

Substitute 7.3×102 Wm2 for α and 0.55 for Insolation.

7.3×102 Wm2=reflected solar radiation0.55reflected solar radiation=(7.3×102 Wm2)(0.55)=4×102 Wm2

Convert hours to seconds:

1 hr=1 hr(60 min1 hr)(60 sec1 min)=3600 sec

Determine energy:

Recall the equation for energy from the absorbed solar radiation:

absorbed energy=At(insolationreflected solar radiation)

Substitute 1.5 m2 for A, 3600 sec for t, 7.3×102 Wm2 for insolation and 4×102 Wm2 for reflected solar radiation:

absorbed energy=(1.5 m2)(3600 sec)(7.3×102 Wm24×102 Wm2)=(5400)(330) m2sec Jsecm2=1.78×106 J

Determine the mass of concrete:

Convert m2 to cm2.

1.5 m2=1.5 m2(104 cm1 m2)=1.5×104 cm

Recall the formula for volume.

V=zA

Recall the formula for density.

ρ=mV

Substitute zA for V.

ρ=mzAm=ρzA

Substitute 2.4 gcm2 for ρ, 5 cm for z and 1.5×104 cm for A.

m=(2.4 gcm2)(5 cm)(1.5×104 cm)=1.8×105 g

Convert energy to calorie heat:

1.78×106 J=1.78×106 J(1 cal4.184 J)=4.25×105 cal

Determine the temperature change of concrete.

Recall the formula for heat:

Q=mcΔT

Substitute 0.16 calgC° for c, 4.25×105 cal for Q and 1.8×105 g for m.

(4.25×105 cal)=(1.8×105 g)(0.16 calgC°)ΔTΔT=(4.25×105 cal)(1.8×105 g)(0.16 calgC°)=14.76 °C

Conclusion:

The change in temperature is 14.76 °C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Statistical thermodynamics. The number of imaginary replicas of a system of N particlesa) cannot be greater than Avogadro's numberb) must always be greater than Avogadro's number.c) has no relation to Avogadro's number.
Lab-Based Section Use the following information to answer the lab based scenario. A student performed an experiment in an attempt to determine the index of refraction of glass. The student used a laser and a protractor to measure a variety of angles of incidence and refraction through a semi-circular glass prism. The design of the experiment and the student's results are shown below. Angle of Incidence (°) Angle of Refraction (º) 20 11 30 19 40 26 50 31 60 36 70 38 2a) By hand (i.e., without using computer software), create a linear graph on graph paper using the student's data. Note: You will have to manipulate the data in order to achieve a linear function. 2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your answer to the nearest hundredth.
Use the following information to answer the next two questions. A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in the diagram. 3a) Determine the critical angle of zircon. 35.0° 70° 55 55° 3b) Determine the angle of refraction when the laser beam leaves the prism.

Chapter 22 Solutions

Physical Science

Ch. 22 - Prob. 11ACCh. 22 - 12. What is the layer of the atmosphere where...Ch. 22 - Prob. 13ACCh. 22 - Prob. 14ACCh. 22 - Prob. 15ACCh. 22 - 16. Ultraviolet radiation is filtered by a. the...Ch. 22 - Prob. 17ACCh. 22 - Prob. 18ACCh. 22 - Prob. 19ACCh. 22 - Prob. 20ACCh. 22 - Prob. 21ACCh. 22 - Prob. 22ACCh. 22 - Prob. 23ACCh. 22 - Prob. 24ACCh. 22 - 25. The basic shapes of clouds do not...Ch. 22 - Prob. 26ACCh. 22 - Prob. 27ACCh. 22 - Prob. 28ACCh. 22 - Prob. 29ACCh. 22 - Prob. 30ACCh. 22 - Prob. 31ACCh. 22 - Prob. 32ACCh. 22 - Prob. 33ACCh. 22 - Prob. 34ACCh. 22 - Prob. 35ACCh. 22 - Prob. 36ACCh. 22 - Prob. 37ACCh. 22 - Prob. 38ACCh. 22 - Prob. 39ACCh. 22 - Prob. 40ACCh. 22 - Prob. 41ACCh. 22 - Prob. 42ACCh. 22 - Prob. 43ACCh. 22 - 44. Without adding or removing any water vapor, a...Ch. 22 - Prob. 45ACCh. 22 - Prob. 46ACCh. 22 - Prob. 47ACCh. 22 - Prob. 48ACCh. 22 - Prob. 1QFTCh. 22 - Prob. 2QFTCh. 22 - Prob. 3QFTCh. 22 - Prob. 4QFTCh. 22 - Prob. 5QFTCh. 22 - 6. Explain the relationship between air...Ch. 22 - Prob. 7QFTCh. 22 - 8. Provide an explanation for the observation...Ch. 22 - Prob. 9QFTCh. 22 - Prob. 10QFTCh. 22 - Prob. 11QFTCh. 22 - Prob. 12QFTCh. 22 - Prob. 13QFTCh. 22 - 1. Describe how you could use a garden hose and a...Ch. 22 - Prob. 2FFACh. 22 - Prob. 3FFACh. 22 - 4. Evaluate the requirement that differential...Ch. 22 - Prob. 5FFACh. 22 - 1. On the scale of a basketball, how thick, in...Ch. 22 - 2. If a piece of plastic food wrap is being...Ch. 22 - Prob. 3PEBCh. 22 - Prob. 4PEBCh. 22 - Prob. 5PEBCh. 22 - 6. If the atmospheric pressure in the eye of a...Ch. 22 - 7. A helium balloon at sea level had a volume of...Ch. 22 - 8. A helium balloon had a volume of 1.50 m3 when...Ch. 22 - Prob. 9PEBCh. 22 - Prob. 10PEBCh. 22 - 11. If the temperature on the edge of the Grand...Ch. 22 - 12. If the insolation of the Sun shining on...Ch. 22 - 13. If the insolation of the Sun shining on...Ch. 22 - 14. In the evening, a stick measuring 0.75 m...Ch. 22 - 15. If outside air with an absolute humidity of 4...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
A Level Physics – Ideal Gas Equation; Author: Atomi;https://www.youtube.com/watch?v=k0EFrmah7h0;License: Standard YouTube License, CC-BY