Concept explainers
When ethylamine, a weak base

Interpretation:
The K of the given reaction is to be calculated.
Concept introduction:
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Every concentration term is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
pH scale is a type of measurement of H+ ion concentration in the solution. It is taken as a negative log of H+ ion concentration as:
For the equilibrium conditions:
Where, ka is acid dissociation constant, kb is base dissociation constant and kw is ionic product of water whose value is fixed as 10-14.
Answer to Problem 27QAP
The required value of
Explanation of Solution
Given Information:
The weak base ethylamine
The reaction is:
The ethylamine dissociates as;
The equilibrium constant expression will be:
Further the formic acid dissociates as:
Hence, we have:
The equilibrium constant expression will be:
Now both the reactions are combined as:
The equilibrium constant expression will be:
The expression can be rearranged as:
Putting the values we get:
The required value of
Want to see more full solutions like this?
Chapter 22 Solutions
OWLv2 for Masterton/Hurley's Chemistry: Principles and Reactions, 8th Edition, [Instant Access], 1 term (6 months)
- Using the chart describe the change from cystine to tyrosine and its impact on the protein. Using the chart describe the change from histidine to aspartic acid and its impact on the protein.arrow_forwardHow to get the predicted product of this reaction belowarrow_forwardPlease help me fill out the chart then using the chart describe the change from cystine to tyrosine and its impact on the protein. Then using the chart describe the change from histidine to aspartic acid.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning





