EBK CHEMISTRY: ATOMS FIRST
EBK CHEMISTRY: ATOMS FIRST
3rd Edition
ISBN: 8220103675505
Author: Burdge
Publisher: YUZU
bartleby

Videos

Textbook Question
Book Icon
Chapter 22, Problem 22.71QP

Commercial silver-plating operations frequently use a solution containing the complex Ag(CN)2 ion. Because the formation constant (Kf) is quite large, this procedure ensures that the free Ag+ concentration in solution is low for uniform electrodeposition. In one process, a chemist added 9.0 L of 5.0 M NaCN to 90.0 L of 0.20 M AgNO3. Calculate the concentration of free Ag+ ions at equilibrium. See Table 17.5 for Kf value.

Expert Solution & Answer
Check Mark
Interpretation Introduction

Interpretation: The concentration of free Ag+ ions at equilibrium to be calculated in a given chemical equilibrium.

Concept Introduction:

Reaction of coordination compounds: Complex ion undergoes ligand exchange (or substitution) reactions in solution. The rate of reaction is depends on the nature of metal ions and the ligands.

Formation constant: Kf=[product] eq[reactant] eq the formation constant of an equilibrium reaction is the ratio of equilibrium concentration of product by the equilibrium concentration of reactant.

No. of moles: numberofmoles=molarity×volume

To Identify: The concentration of free Ag+ ions at equilibrium to be calculated in a given chemical equilibrium.

Answer to Problem 22.71QP

Answer

The calculated concentration of free Ag+ ions at equilibrium is 2.2 × 10-20 M.

Explanation of Solution

Find the concentration of free Ag+ ions at equilibrium.

Ag+(aq)+2CN-(aq)[Ag(CN)2]-(aq)

The formation constant for the above reaction: Kf=[Fe(H2O)6NCS]2+ eq[Fe(H2O)6]3+eq [SCN-eq

  • Concentration of cyanide ions:

Concentration [CN-] = moles of cyanide ionsvolume of solution.Molarity × volume (of cyanide ions)volume of solution(5.0 mol/L)(9.0 L)(90 + 9.0) L=  0.455 M.

The concentration of cyanide ions is calculated as shown above. The concentration of cyanide ions is used at the equilibrium formation constant.

  • Concentration of silver ions:

Concentration [Ag+] = moles of silver ionsvolume of solution.Molarity × volume (of silver ions)volume of solution(0.20 mol/L)(90 L)(90 + 9.0) L=  0.182 M.

The concentration of silver ions is calculated as shown above. The concentration of silver ion is used at the equilibrium formation constant.

  • Determine the concentrations after complete reaction.

 Ag+(aq)    +2CN-(aq)[Ag(CN)2]-(aq)initial(M):0.1820.4550.00change(M):-0.182-(2)(0.182)+0.182_Equilibrium(M):00.09100.182Kf=   [Ag(CN)2]- eq[Ag+]eq [CN-]2eq1.0×1021= 0.182[Ag+](0.0910 M)2[Ag+]=    2.2×10-20M

In order to calculate the concentration of silver ions, all the known values are substituted in the equilibrium formation constant. Thus, the obtained concentration of silver ions is 2.2×10-20M.

Conclusion
The concentration of free Ag+ ions at equilibrium is calculated in a given chemical equilibrium.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Please correct answer and don't used hand raiting
Consider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.
Denote the dipole for the indicated bonds in the following molecules. H3C ✓ CH3 B F-CCl 3 Br-Cl H3C Si(CH3)3 wwwwwww OH НО. HO HO OH vitamin C CH3

Chapter 22 Solutions

EBK CHEMISTRY: ATOMS FIRST

Ch. 22.1 - Prob. 3PPBCh. 22.1 - Prob. 3PPCCh. 22.1 - Prob. 22.1.1SRCh. 22.1 - Prob. 22.1.2SRCh. 22.1 - Prob. 22.1.3SRCh. 22.1 - Write the correct formula for...Ch. 22.3 - Prob. 22.4WECh. 22.3 - Prob. 4PPACh. 22.3 - Prob. 4PPBCh. 22.3 - Prob. 4PPCCh. 22.3 - Prob. 22.3.1SRCh. 22.3 - Prob. 22.3.2SRCh. 22 - What distinguishes a transition metal from a main...Ch. 22 - Prob. 22.2QPCh. 22 - Prob. 22.3QPCh. 22 - Without referring to the text, write the...Ch. 22 - Write the electron configurations of the following...Ch. 22 - Prob. 22.6QPCh. 22 - Prob. 22.7QPCh. 22 - Prob. 22.8QPCh. 22 - Describe the interaction between a donor atom and...Ch. 22 - Prob. 22.10QPCh. 22 - Prob. 22.11QPCh. 22 - Prob. 22.12QPCh. 22 - Prob. 22.13QPCh. 22 - What are the systematic names for the following...Ch. 22 - Prob. 22.15QPCh. 22 - Write the formulas for each of the following ions...Ch. 22 - Prob. 22.17QPCh. 22 - Prob. 22.18QPCh. 22 - Prob. 22.19QPCh. 22 - Prob. 22.20QPCh. 22 - Prob. 22.21QPCh. 22 - Prob. 22.22QPCh. 22 - Prob. 22.23QPCh. 22 - Prob. 22.24QPCh. 22 - Prob. 22.25QPCh. 22 - Briefly describe crystal field theory.Ch. 22 - Prob. 22.27QPCh. 22 - What is the origin of color in a coordination...Ch. 22 - Prob. 22.29QPCh. 22 - Prob. 22.30QPCh. 22 - Prob. 22.31QPCh. 22 - Prob. 22.32QPCh. 22 - The absorption maximum for the complex ion...Ch. 22 - Prob. 22.34QPCh. 22 - Prob. 22.35QPCh. 22 - Prob. 22.36QPCh. 22 - Prob. 22.37QPCh. 22 - Prob. 22.38QPCh. 22 - Prob. 22.39QPCh. 22 - Prob. 22.40QPCh. 22 - The [Fe(CN)6]3 complex is more labile than the...Ch. 22 - Prob. 22.42QPCh. 22 - Prob. 22.43QPCh. 22 - Prob. 22.44QPCh. 22 - Prob. 22.45QPCh. 22 - Prob. 22.46QPCh. 22 - Prob. 22.47QPCh. 22 - Prob. 22.48QPCh. 22 - Prob. 22.49QPCh. 22 - Prob. 22.50QPCh. 22 - Prob. 22.51QPCh. 22 - Prob. 22.52QPCh. 22 - Prob. 22.53QPCh. 22 - Prob. 22.54QPCh. 22 - A student in 1895 prepared three coordination...Ch. 22 - Prob. 22.56QPCh. 22 - Prob. 22.57QPCh. 22 - Prob. 22.58QPCh. 22 - Prob. 22.59QPCh. 22 - Prob. 22.60QPCh. 22 - Prob. 22.61QPCh. 22 - Hydrated Mn2+ ions are practically colorless (see...Ch. 22 - Which of the following hydrated cations are...Ch. 22 - Prob. 22.64QPCh. 22 - Prob. 22.65QPCh. 22 - Prob. 22.66QPCh. 22 - Prob. 22.67QPCh. 22 - Prob. 22.68QPCh. 22 - Prob. 22.69QPCh. 22 - Prob. 22.70QPCh. 22 - Commercial silver-plating operations frequently...Ch. 22 - Prob. 22.72QPCh. 22 - Prob. 22.73QPCh. 22 - Prob. 22.74QPCh. 22 - Prob. 22.75QPCh. 22 - Prob. 22.76QPCh. 22 - Prob. 22.77QPCh. 22 - Prob. 22.78QPCh. 22 - Prob. 22.79QPCh. 22 - Prob. 22.80QP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    General Chemistry - Standalone book (MindTap Cour...
    Chemistry
    ISBN:9781305580343
    Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: The Molecular Science
    Chemistry
    ISBN:9781285199047
    Author:John W. Moore, Conrad L. Stanitski
    Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Introduction to Electrochemistry; Author: Tyler DeWitt;https://www.youtube.com/watch?v=teTkvUtW4SA;License: Standard YouTube License, CC-BY