A biology laboratory is maintained at a constant temperature of 7.00ºC by an air conditioner, which is vented to the air outside. On a typical hot summer day, the outside temperature is 27.0ºC and the air-conditioning unit emits energy to the outside at a rate of 10.0 kW. Model the unit as having a coefficient of performance (COP) equal to 40.0% of the COP of an ideal Carnot device. (a) At what rate does the air conditioner remove energy from the laboratory? (b) Calculate the power required for the work input. (c) Find the change in entropy of the Universe produced by the air conditioner in 1.00 h. (d) What If? The outside temperature increases to 32.0ºC. Find the fractional change in the COP of the air conditioner.
(a)
The rate of removal of energy by the air conditioner.
Answer to Problem 22.70AP
The rate of removal of energy by the air conditioner is
Explanation of Solution
Given info: The temperature of laboratory is
The formula for Carnot efficiency of cooling is,
Here,
Substitute
Solve the above expression for
The coefficient of performance at
Substitute
The rate of emission of energy outside is the sum of rate of removal of energy and input work required to do so.
Rearrange the above expression for
The formula to coefficient of performance is,
Here,
Substitute
Solve the above expression for
Substitute
Substitute
Conclusion:
Therefore, the rate of removal of energy by the air conditioner is
(b)
The power required for the input work.
Answer to Problem 22.70AP
The power required for the input work is
Explanation of Solution
Given info: The temperature of laboratory is
As calculated in equation (2) of the above part,
So the work input is
Conclusion:
Therefore, the work input required for the input work is
(c)
The entropy change of universe produced by air conditioner in
Answer to Problem 22.70AP
The entropy change of universe produced by the air conditioner in
Explanation of Solution
Given info: The temperature of laboratory is
The formula to calculate change in entropy is,
Substitute
Solve the above expression for
Conclusion:
Therefore, the entropy change of universe produced by the air conditioner in
(d)
The fractional change in
Answer to Problem 22.70AP
The fractional change in
Explanation of Solution
Given info: The temperature of laboratory is
The formula to calculate
Here,
Substitute
The formula for the percentage is,
Here,
Substitute
Conclusion:
Therefore, the fractional change in
Want to see more full solutions like this?
Chapter 22 Solutions
Bundle: Physics for Scientists and Engineers, Technology Update, 9th Loose-leaf Version + WebAssign Printed Access Card, Multi-Term
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that system of all three beads is zero. 91 E field lines 93 92 What charge does each bead carry? 91 92 -1.45 = = What is the net charge of the system? What charges have to be equal? μC 2.9 × What is the net charge of the system? What charges have to be equal? μC 93 = 2.9 μС 92 is between and 91 93° The sum of the charge on q₁ and 92 is 91 + 92 = −2.9 μC, and the net charge of thearrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forwardFind the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning