Concept explainers
Two very large, nonconducting plastic sheets, each 10.0 cm thick, carry uniform charge densities σ1, σ2, σ3, and σ4 on their surfaces (Fig. E22.30). These surface charge densities have the values σ1 = −6.00 μC/m2, σ2 = +5.00 μC/m2, σ3 = +2.00 μC/m2, and σ4 = +4.00 μC/m2. Use Gauss’s law to find the magnitude and direction of the electric field at the following points, far from the edges of these sheets: (a) point A, 5.00 cm from the left face of the left-hand sheet; (b) point B, 1.25 cm from the inner surface of the right-hand sheet; (c) point C, in the middle I of the right-hand sheet.
Learn your wayIncludes step-by-step video
Chapter 22 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
University Physics Volume 1
Sears And Zemansky's University Physics With Modern Physics
Life in the Universe (4th Edition)
Physics: Principles with Applications
College Physics
Tutorials in Introductory Physics
- A charge of -5.92 nC is uniformly distributed on a thin square sheet of nonconducting material of edge length 20.4 cm. What is the surface charge density of the sheet? What is the magnitude of the electric field next to the sheet and proximate to the center of the sheet?arrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. Concentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the charge distribution for the outer surface of the conducting spherical shell. O 4.130 m2 4 C 4.130x10 m2 -5 C 4.130x10 m2 -8 C 4.130x10 m2arrow_forwardTwo very large, nonconducting plastic sheets, each 10.0 cm thick, carry uniform charge densities 01, 02, 03 and 04 on their surfaces, as shown in the following figure (Figure 1). These surface charge densities have the values 01 = -5.50 μC/m², 02 = 5.00 μC/m², 03 = 1.00 μC/m², and 4 = 4.00 μC/m². Use Gauss's law to find the magnitude and direction of the electric field at the following points, far from the edges of these sheets. Part A What is the magnitude of the electric field at point A, 5.00 cm from the left face of the left-hand sheet? Express your answer with the appropriate units. E = O μA Value Units ?arrow_forward
- An infinitely long cylindrical conducting shell of outer radius r1 = 0.10 m and inner radius r2 = 0.08 m initially carries a surface charge density σ = -0.45 μC/m2. A thin wire, with linear charge density λ = 1.2 μC/m, is inserted along the shells' axis. The shell and the wire do not touch and there is no charge exchanged between them. What is the new surface charge density, in microcoulombs per square meter, on the inner surface of the cylindrical shell? What is the new surface charge density, in microcoulombs per square meter, on the outer surface of the cylindrical shell? Enter an expression for the magnitude of the electric field outside the cylinder (r > 0.1 m), in terms of λ, σ, r1, r, and ε0.arrow_forwardAn insulating solid spherical shell has inner radius A and outer radius 1.9A. Charge is uniformly distributed throughout the shell with a charge density of +Z. The charge enclosed inside the spherical shell can be written as Q=fZA3 where f is a numerical value with no units. What is the value of f? (Answer should have three significant digits.)arrow_forwardA long, nonconducting, solid cylinder of radius 3.0 cm has a nonuniform volume charge density p that is a function of radial distance r from the cylinder axis: p = k/r where k is a constant. If the electric field strength is 7.23 x 105 N/C at r= 1.5 cm, what is the value of k (uC/m2)? O 7.0 O 3.7 27 O 6.4 O 2.6 O 51.6 O 4.3 O 14.4 O 2.8 O 42arrow_forward
- A solid conducting sphere has a net charge of +23.0 µC uniformly distributed across its surface. If the sphere has a radius of 38.0 mm, what is the surface charge density on the sphere's surface? O 3.80 mC/m^2 O 1.27 mC/m^2 O 0.100 mC/m^2 O 5.07 mC/m^2arrow_forwardcs.com/myct/item/view?assignment ProblemiD-195605601 @ 2 S A 12-cm-long thin rod has the nonuniform charge density A(z) = (6.5 nC/cm) e-\/(6.0 cm) 1 where x is measured from the center of the rod. X f 3 E D BO C $ 4 R F BEB V 96 5 FB 6 G ▼ B Part A What is the total charge on the rod? Hint: This exercise requires an integration. Think about how to handle the absolute value sign. Express your answer with the appropriate units. TY Q= Value Provide Feedback Submit WA MacBook Air H 7 N HÅ Request Answer 44 U 8 7 Units 1 M 9 K MOSISO ? O " O L P command I option Next > Reviearrow_forwardA charged nonconducting rod has a length L of 2.0 m and a cross-sectional area A of 8.0 cm?; it is placed along the positive side of an x axis with one end at the origin. The volume charge density p is the charge per unit volume, with the units of coulomb per cubic meter. a) How many excess electrons are on the rod if the rod's volume charge density pu is uniform with a value of –10 µC/m³? How does that compare to the total number of electrons you would estimate would be in the rod? (By compare, just a ballpark estimate- to within several orders of magnitude, factors of ten). b) What is an expression for the number of excess electrons on the rod if the rod's volume charge is nonuniform and is given instead by pN=ax³ where a is a constant? c) What value of a is necessary for the rod in part b to have the same number of excess electrons as the rod in part a)?arrow_forward
- A 1 meter length of coaxial cable has an inner radius of 5 mm and an outer radius of 10 mm. The space between conductors is assumed to be filled with air. The total charge the inner conductor is 41 UC. Answer questions 10 and 11 on 10. The charge density on inner conductor is: CHAR a. 200m uc b. 400m u c. 200 μC 021-Sha A Mayjen 25°C X x 90E 9:35 AM 3/12001arrow_forwardA charge of uniform linear density 3.41 nC/m is distributed along a long, thin, nonconducting rod. The rod is coaxial with a long conducting cylindrical shell with an inner radius of 5.43 cm and an outer radius of 12.4 cm. What is the surface charge density on the inner surface of the shell?arrow_forward23.57 - An Ionic Crystal. Figure P23.57 Figure P23.57 shows eight point charges arranged at the comers of a cube with sides of length d. The values of the charges are +q and -q, as shown. This is +9 a model of one cell of a cubic ionic crystal. In sodium chloride (NaCI), for instance, the posi- tive ions are Na* and the nega- tive ions are CI". (a) Calculate the potential energy U of this arrangement. (Take as zero the potential energy of the eight charges when they are infinitely far apart.) (b) In part (a), you should have found that U < 0. Explain the relationship between this result and the observation that such ionic crystals exist in nature.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning