Concept explainers
Interpretation:
The amount of water required in kilograms has to be calculated to get 2.0 L of
Concept introduction:
Ideal gas equation is given as follows,
Answer to Problem 22.16QP
The amount of water required to get 2.0 L of
Explanation of Solution
Capture the given data
Pressure is given as
Temperature is given as
Gas constant value is
The number of moles of deuterium is calculated by the use of modified ideal gas equation.
The number of moles of deuterium is 0.07357 moles.
By using the modified ideal gas equation and given data the number of moles of deuterium is calculated as 0.07357 moles.
To determine: The number of moles of water
The abundance of deuterium is given as 0.015 percent.
The number of moles of
By the use of calculated moles of deuterium and percent of deuterium the number of moles of water is calculated as
To determine: The amount of
Recovery is given as 80 percent. The amount of water needed is calculated as follows:
The amount of
By the use of moles of water and recovery of deuterium the amount of water is needed to produce 2.0 L of deuterium is calculated as 11.04495 Kg.
The required amount of water to produce the given amount of deuterium was calculated.
Want to see more full solutions like this?
Chapter 22 Solutions
EBK CHEMISTRY
- Don't used Ai solutionarrow_forwardLet's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning