Concept explainers
Interpretation:
The chirality centers in aldotetrose and ketopentose are to be calculated and the stereoisomers for each general case are to be determined.
Concept Introduction:
Carbohydrates are categorized mainly as monosaccharides, disaccharides, and polysaccharides. Monosaccharides are single sugar units, mainly glucose and fructose, disaccharides are two sugar units, such as sucrose, and polysaccharides are more than two sugar units, such as starch and cellulose.
Monosaccharides containing 3-carbon atoms are called triose, 4-carbon atoms called tetrose, 5-carbon atoms called pentose, and so on.
In chiral molecules, carbon atom having four nonidentical substituent groups is called the chirality center of that molecule. Chirality center may also be called stereocenter, which signifies any point in the molecule where the interchanging of any two groups may lead to stereoisomers. The carbon of a carbohydrate can be considered as chiral when the carbon has all four different substituents attached to it.
The stereoisomers are calculated as follows:
Here,
Answer to Problem 1PP
Solution:
a) Two
b) Two
c) Four
Explanation of Solution
a) The aldotetrose
A monosaccharide containing four carbon atoms is called a tetrose. An aldotetrose is a monosaccharide that contains
The structure of aldotetrose is as follows:
The carbon atom attached to four different groups is chiral carbon. The chiral center in ketopentose is marked by * as follows:
Hence, an aldotetrose has two chirality centers.
b) The ketopentose
A monosaccharide containing five carbon atoms is called a pentose. A pentose containing a keto group is called a ketopentose.
The structure of ketopentose is as follows:
The carbon atom attached to four different groups is chiral carbon. The chiral center in ketopentose is marked by * as follows:
Hence, a ketopentose has two chirality centers.
c) The number of stereoisomers that will be expected from each general structure
Stereoisomers of a molecule have the same molecular formula, but different arrangement of atoms in space. Stereoisomers are different from enantiomers as they are not mirror images of each other, while enantiomers are mirror images of one another.
The compounds aldotetrose and ketopentose have two sets of enantiomers. The number of stereoisomers is calculated as:
Substitute 2 for
Hence, they will have four stereoisomers for each general structure.
Want to see more full solutions like this?
Chapter 22 Solutions
Organic Chemistry, 12e Study Guide/Student Solutions Manual
- this is an organic chemistry question please answer accordindly!! please post the solution draw the figures on a paper please hand drawn and post, please answer EACH part till the end and dont just provide wordy explanations, please draw them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and draw it not just word explanations!!arrow_forwardA mixture of 0.412 M C12, 0.544 M F2, and 0.843 M CIF is enclosed in a vessel and heated to 2500 K. C12(g) + F2(g )2CIF(g) Kc = 20.0 at 2500 K Calculate the equilibrium concentration of each gas at 2500 K. [C12] = M [F2] = M [ CIF] =arrow_forwardShow reaction mechanism with explanation. don't give Ai generated solutionarrow_forward
- Don't used Ai solutionarrow_forwardthis is an organic chemistry question please answer accordindly!! please post the solution draw the figures and post, answer the question in a very simple and straight forward manner thanks!!!!! please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures or diagrams, please draw them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this kindly solve all parts and draw it not just word explanations!!arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Organic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning