Lehninger Principles Of Biochemistry 7e & Study Guide And Solutions Manual For Lehninger Principles Of Biochemistry 7e
Lehninger Principles Of Biochemistry 7e & Study Guide And Solutions Manual For Lehninger Principles Of Biochemistry 7e
7th Edition
ISBN: 9781319125776
Author: David L. Nelson, Michael M. Cox
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 22, Problem 1P
Summary Introduction

To determine: Bacteria forms colony inside the root nodules of the pea plant and consume 20% of the ATP produced by the plants, the reason for this much consumption by the bacteria.

Introduction:

Nitrogen is the essential nutrient for plants. Legumes use “nitrogen fixing bacteria”, within their root nodules to counter the limitation. Rhizobia is a nitrogen fixing bacteria that produces ammonia. These bacterial are called as “nitrogen-fixing bacteria”.

Expert Solution & Answer
Check Mark

Explanation of Solution

Explanation:

Root nodules contain bacteria maintain a “symbiotic relationship” with the pea plant where the plant supplies the bacteria with ATP and reducing power. The bacteria in return supply the plant with “ammonium ions” produced by reducing atmospheric nitrogen as plants cannot use nitrogen in its molecular form.

The reduction of nitrogen to ammonium ions requires large amount of energy in the form of ATP. The triple bond of nitrogen is very stable. Therefore, fixation of nitrogen exhibits very high activation energy, as atmospheric nitrogen is chemically non-reactive or inert under normal conditions.

This high activation energy barrier is overcome by the hydrolysis of ATP.

N2+10H++8e-+16ATP2NH4++16ADP+16Pi+H2

Conclusion

Conclusion:

Root nodules are type of symbiotic association between plant and bacteria and with the help of this processes both are benefited.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Biochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank you
1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.
Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.
Knowledge Booster
Background pattern image
Biochemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Biochemistry
Biochemistry
ISBN:9781319114671
Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.
Publisher:W. H. Freeman
Text book image
Lehninger Principles of Biochemistry
Biochemistry
ISBN:9781464126116
Author:David L. Nelson, Michael M. Cox
Publisher:W. H. Freeman
Text book image
Fundamentals of Biochemistry: Life at the Molecul...
Biochemistry
ISBN:9781118918401
Author:Donald Voet, Judith G. Voet, Charlotte W. Pratt
Publisher:WILEY
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Fundamentals of General, Organic, and Biological ...
Biochemistry
ISBN:9780134015187
Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher:PEARSON
Metabolic Pathways; Author: Wisc-Online;https://www.youtube.com/watch?v=m61bQYio9ys;License: Standard Youtube License