Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 15P
(I) A long thin wire, hundreds of meters long, carries a uniformly distributed charge of –7.2 μC per meter of length. Estimate the magnitude and direction of the electric field at points (a) 5.0 m and (b) 1.5 m perpendicular from the center of the wire.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(c)
d) 2R
R.
R.
R.
Two uniform line charges of = 4n C/m each are parallel to the z-axis at (0, 4)m and (0,
-4)m. Magnitude of electric field at points (+4, 0, 0) is
(a) 9 V/m
(b) 18 V/m
C4.5 V/m
(d) 9/2 V/m
6 In Fig. 22-27, two identical circu-
lar nonconducting rings are centered
on the same line with their planes
perpendicular to the line. Each ring
has charge that is uniformly distrib-
uted along its circumference. The
rings each produce electric fields at points along the line. For three
situations, the charges on rings A and B are, respectively, (1) qo and
9o, (2) -90 and -90, and (3) - and qo. Rank the situations
according to the magnitude of the net electric field at (a) point P1
midway between the rings, (b) point P, at the center of ring B, and
(c) point P3 to the right of ring B. greatest first.
P,
P3
Ring A
Ring B
Figure 22-27 Question 6.
60 O In Fig. 21-43, six charged particles surround particle 7 at ra
dial distances of either d = 1.0 cm or 2d, as drawn. The charges are
q1 = +2e,92 = +4e, q3 = +e,q4= +4e,q5 = +2e,q6 = +8e,q7 = +6e
with e = 1.60 x 10-19C. What is the magnitude of the net electro
static force on particle 7?
Figure 21-43 Problem 60.
4.
Chapter 22 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 22.1 - Which of the following would cause a change in the...Ch. 22.2 - A point charge Q is at the center of a spherical...Ch. 22.2 - Three 2.95 C charges are in a small box. What is...Ch. 22.3 - A charge Q is placed on a hollow metal ball. We...Ch. 22.3 - CHAPTER-OPENING QUESTIONGuess now! A nonconducting...Ch. 22.3 - Which of the following statements about Gausss law...Ch. 22 - If the electric flux through a closed surface is...Ch. 22 - Is the electric field E in Gausss law....Ch. 22 - A point charge is surrounded by a spherical...Ch. 22 - What can you say about the flux through a closed...
Ch. 22 - The electric field E is zero at all points on a...Ch. 22 - Define gravitational flux in analogy to electric...Ch. 22 - Would Gausss law be helpful in determining the...Ch. 22 - A spherical basketball (a nonconductor) is given a...Ch. 22 - In Example 226, it may seem that the electric...Ch. 22 - Suppose the line of charge in Example 226 extended...Ch. 22 - A point charge Q is surrounded by a spherical...Ch. 22 - A solid conductor carries a net positive charge Q....Ch. 22 - A point charge q is placed at the center of the...Ch. 22 - A small charged ball is inserted into a balloon....Ch. 22 - (I) A uniform electric field of magnitude 5.8 102...Ch. 22 - (I) The Earth possesses an electric field of...Ch. 22 - (II) A cube of side l is placed in a uniform field...Ch. 22 - (II) A uniform field E is parallel to the axis of...Ch. 22 - (I) The total electric flux from a cubical box...Ch. 22 - (I) Figure 2226 shows five closed surfaces that...Ch. 22 - (II) In Fig. 2227, two objects, O1 and O2, have...Ch. 22 - (II) A ring of charge with uniform charge density...Ch. 22 - (II) In a certain region of space, the electric...Ch. 22 - (II) A point charge Q is placed at the center of a...Ch. 22 - (II) A 15.0-cm-long uniformly charged plastic rod...Ch. 22 - (I) Draw the electric field lines around a...Ch. 22 - (I) The field just outside a 3.50-cm-radius metal...Ch. 22 - (I) Starting from the result of Example 223, show...Ch. 22 - (I) A long thin wire, hundreds of meters long,...Ch. 22 - (I) A metal globe has l.50 mC of charge put on it...Ch. 22 - (II) A nonconducting sphere is made of two layers....Ch. 22 - (II) A solid metal sphere of radius 3.00 m carries...Ch. 22 - (II) A 15.0-cm-diameter nonconducting sphere...Ch. 22 - (II) A flat square sheet of thin aluminum foil,...Ch. 22 - (II) A spherical cavity of radius 4.50 cm is at...Ch. 22 - (II) A point charge Q rests at the center of an...Ch. 22 - (II) A solid metal cube has a spherical cavity at...Ch. 22 - (II) Two large, flat metal plates are separated by...Ch. 22 - (II) Suppose the two conducting plates in Problem...Ch. 22 - (II) The electric field between two square metal...Ch. 22 - (II) Two thin concentric spherical shells of radii...Ch. 22 - (II) A spherical rubber balloon carries a total...Ch. 22 - (II) Suppose the nonconducting sphere of Example...Ch. 22 - (II) Suppose in Fig. 2232, Problem 29, there is...Ch. 22 - (II) Suppose the thick spherical shell of Problem...Ch. 22 - (II) Suppose that at the center of the cavity...Ch. 22 - (II) A long cylindrical shell of radius R0 and...Ch. 22 - (II) A very long solid nonconducting cylinder of...Ch. 22 - (II) A thin cylindrical shell of radius R1 is...Ch. 22 - (II) A thin cylindrical shell of radius R1 = 6.5...Ch. 22 - (II) (a) If an electron (m = 9.1 1031 kg) escaped...Ch. 22 - (II) A very long solid nonconducting cylinder of...Ch. 22 - (II) A nonconducting sphere of radius r0 is...Ch. 22 - (II) A very long solid nonconducting cylinder of...Ch. 22 - (II) A flat ring (inner radius R0, outer radius...Ch. 22 - (II) An uncharged solid conducting sphere of...Ch. 22 - (III) A very large (i.e., assume infinite) flat...Ch. 22 - (III) Suppose the density of charge between r1 and...Ch. 22 - (III) Suppose two thin flat plates measure 1.0 m ...Ch. 22 - (III) A flat slab of nonconducting material (Fig....Ch. 22 - (III) A flat slab of nonconducting material has...Ch. 22 - (III) An extremely long, solid nonconducting...Ch. 22 - (III) Charge is distributed within a solid sphere...Ch. 22 - A point charge Q is on the axis of a short...Ch. 22 - Prob. 51GPCh. 22 - The Earth is surrounded by an electric field,...Ch. 22 - A cube of side has one corner at the origin of...Ch. 22 - A solid nonconducting sphere of radius r0 has a...Ch. 22 - A point charge of 9.20 nC is located at the origin...Ch. 22 - A point charge produces an electric flux of +235 N...Ch. 22 - A point charge Q is placed a distance r0/2 above...Ch. 22 - Three large but thin charged sheets are parallel...Ch. 22 - Neutral hydrogen can be modeled as a positive...Ch. 22 - A very large thin plane has uniform surface charge...Ch. 22 - A sphere of radius r0 carries a volume charge...Ch. 22 - Dry air will break down and generate a spark if...Ch. 22 - Three very large sheets are separated by equal...Ch. 22 - In a cubical volume, 0.70 m on a side, the...Ch. 22 - A conducting spherical shell (Fig. 2249) has inner...Ch. 22 - A hemisphere of radius R is placed in a...Ch. 22 - (III) An electric field is given by...
Additional Science Textbook Solutions
Find more solutions based on key concepts
S
10. FIGURE EX6.10 shows the velocity graph of a 2.0 kg object as it moves along the x-axis. What is the net ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Use Newton's second law and the definition of acceleration to derive an equation for each cart relating the net...
Tutorials in Introductory Physics
Why are automobiles designed to crumple upon impact?
Conceptual Integrated Science
Review Question 12.4 Ken says that the temperature of a gas measured in kelvins is the average kinetic energy o...
College Physics
1. When is energy most evident?
Conceptual Physics (12th Edition)
32. The rolling resistance for steel on steel is quite low; the coefficient of rolling friction is typically ?r...
College Physics: A Strategic Approach (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 13. (II) Three positive particles of equal charge, +17.0 μC, are located at the cor- ners of an equilateral triangle of side 15.0 cm (Fig.21-55 ). Calculate the magnitude and direction of the net force on each particle due to the other two. Figure 21-55 +170 μC 15.0 cm 15.0 cm +170 μC 15.0 cm +170 μC Problem 130.arrow_forward(12-15) Consider two concentric conducting spherical shells. Inner shell carries an excess charge of +2 µC and outer shell carries +2 µC. In the figure, the inner shell has an inner radius of 0.1 m and an outer radius of 0.2 m, and the outer shell has an inner radius of 0.38 m and an outer radius of 0.5 m. darrow_forward(a) Calculate the strength and direction of the electric field, E, due to point charge of 2.5 nC at a distance 4 mm from the charge. For the direction, consider the line joining the point charge and point at the distance 4 mm. The direction on this line away from the charge is positive and the direction towards the charge is negative.arrow_forward
- •27 Go In Fig. 22-51, two curved plastic rods, one of charge +q and the other of +4 charge -q, form a circle of radius R = 8.50 cm in an xy plane. The x axis passes through both of the connecting points, and the charge is distributed uniformly on both rods. If q = 15.0 pC, what are the (a) magnitude and (b) direction (relative to the positive direction of the x axis) of the electric field E produced at P, the -9 Figure 22-51 Problem 27. center of the circle?arrow_forwardFigure 22-40 shows an electric dipole. What are the (a) magni- tude and (b) direction (rèlative to the positive direction of the x axis) of the dipole's electric field at point P, located at distance r> d? +q d/2 d/2 Fig. 22-40 Problem 19.arrow_forward(a) The electric field near the Earth’s surface has magnitude of about 150 N/C What is the acceleration experienced by an electron near the surface of the Earth? (b) What about a proton? (c) Calculate the ratio of each acceleration to g= 9.8 m/s 2arrow_forward
- i) A particle of mass 2.66×10-26 Kg travels at a speed of 5.0x106 m/s perpendicular to a field of flux density 1.20 T, which deflects it to move in a circular arc of radius 0.231-m. What positive charge is on the particle? (b) What is the ratio of this charge to the charge of an electron?arrow_forward*39 SSM In Fig. 23-49, a small, nonconducting ball of mass m = 1.0 mg and charge q = 2.0 x 10-8C (distributed uniformly through its vol- ume) hangs from an insulating thread that makes an angle 0 = 30° with a vertical, uniformly charged nonconducting sheet (shown in cross sec- tion). Considering the gravitational force on the ball and assuming the sheet extends far vertically and into and out of the page, calculate the surface charge density o of the sheet. m.arrow_forward(II) The l/r2 form of Coulomb's law implies the following: (i) The electric field is zero at all points inside a uniformly charged shell. (ii) The electric field outside a uniformly charged sphere can be found by treating the charge as being concentrated at the center. Use these facts to show that within a uniformly charged sphere of radius R having a volume charge density p C/m3, the field strength increases linearly with the distance r from the center. That is, E ex r for r < R.arrow_forward
- (II) Two point charges, Q₁ = -25 μC and Q2 = +45 μC, are separated by a distance of 12 cm. The electric field at the point P (see Fig. 21-58) is zero. How far from Q₁ is P? 21 -25 μC FIGURE 21-58 Problem 36. P X 12 cm 22 +45 μCarrow_forward(b)(i) The center of a dielectric spherical shell is located at (0,2,0) with inner radius a = 1 cm and outer radius b = 3 cm. The volume charge density of the shell is pv = 2n C/m3. In addition, an infinite long wire with line charge density pl = 5n C/m is on the x-y plane at y = -3. With an aid of diagram, find the electric field intensity, E due to the infinitely long wire at point (0, 0, 0). (b)(ii) Find the electric field intensity, E at (0, 0, 0) due to the spherical shell for radius a < R < b. (b)(iii)Determine the total electric field intensity, E at (0, 0, 0) caused by the spherical shell and the infinite long wire.arrow_forward(c) Calculate the magnitude of the force on the charge q, given that the square is 10.0 cm on a side and q=2 μC. Fr net = 0 Case II. 9a = b = +8 μC and qc = qd = -8 μC. N (e) Due to symmetry the direction of the net force is D. In the -y direction Fnet (d) In your notebook, draw the forces on q due to qa, qb, qc, and qd. Or use the result of of Homework: Charges on a Square Free Body Diagram. = 83.91 qc Hint: For each force draw the x and y components. Some will add and some will cancel. (f) Calculate the magnitude of the force on the charge q, given that the square is 10.0 cm on a side and q=2 μC. X N No, that's only partially correct. O qd Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY