Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21.3, Problem 28P
To determine
The angular velocity of the assembly just after the impact.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure, rod AB has a mass of 10 kg, and must slide within the slots as shown. If the spring is unstretched when θ = 0°, determine the angular velocity of the bar when it reaches that angle after being released from θ = 30°.
The 50-kg wheel has a radius of gyration about its center of gravity G of kG = 300mm. If it rolls without slipping, determine its angular velocity when it has rotated clockwise 90° from the position shown. The spring AB has a stiffness k = 200 N/m and an unstretched length of 400 mm. The wheel is released from rest.
3. The 30-kg gear A has a radius of gyration about its center of mass O of ko = 125 mm. If the 20-kg
gear rack B is subjected to a force of P = 200 N, determine the time required for the gear to obtain
an angular velocity of 20 rad/s, starting from rest. The contact between the gear rack and the
horizontal plane is smooth.
0.15 m
ru
P = 200 N
Chapter 21 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 21.1 - Show that the sum of the moments of inertia of a...Ch. 21.1 - Prob. 2PCh. 21.1 - Prob. 3PCh. 21.1 - Determine the moments of inertia Ix and Iy of the...Ch. 21.1 - Prob. 5PCh. 21.1 - Determine by direct integration the product of...Ch. 21.1 - Prob. 7PCh. 21.1 - Prob. 8PCh. 21.1 - Prob. 9PCh. 21.1 - Prob. 10P
Ch. 21.1 - Prob. 11PCh. 21.1 - Determine the moment of inertia Ixx of the...Ch. 21.1 - Prob. 13PCh. 21.1 - Prob. 14PCh. 21.1 - Prob. 15PCh. 21.1 - Prob. 16PCh. 21.1 - The bent rod has a weight of 1.5 lb/ft. Locate the...Ch. 21.1 - Prob. 18PCh. 21.1 - Prob. 19PCh. 21.1 - Prob. 20PCh. 21.1 - Prob. 21PCh. 21.3 - If a body contains no planes of symmetry, the...Ch. 21.3 - Prob. 23PCh. 21.3 - The 15-kg circular disk spins about its axle with...Ch. 21.3 - Prob. 25PCh. 21.3 - Prob. 26PCh. 21.3 - Prob. 27PCh. 21.3 - Prob. 28PCh. 21.3 - Prob. 29PCh. 21.3 - Prob. 30PCh. 21.3 - Prob. 31PCh. 21.3 - The 2-kg thin disk is connected to the slender rod...Ch. 21.3 - Prob. 33PCh. 21.3 - Prob. 34PCh. 21.3 - The 200-kg satellite has its center of mass at...Ch. 21.3 - Prob. 36PCh. 21.3 - Prob. 37PCh. 21.3 - Determine the kinetic energy of the 7-kg disk and...Ch. 21.3 - Prob. 39PCh. 21.3 - Prob. 40PCh. 21.4 - Prob. 41PCh. 21.4 - Prob. 42PCh. 21.4 - Prob. 43PCh. 21.4 - Prob. 44PCh. 21.4 - Prob. 45PCh. 21.4 - The assembly is supported by journal bearings at A...Ch. 21.4 - Prob. 47PCh. 21.4 - Prob. 48PCh. 21.4 - Prob. 49PCh. 21.4 - Prob. 50PCh. 21.4 - Prob. 51PCh. 21.4 - Prob. 52PCh. 21.4 - Prob. 53PCh. 21.4 - Prob. 54PCh. 21.4 - Prob. 55PCh. 21.4 - Prob. 56PCh. 21.4 - The blades of a wind turbine spin about the shaft...Ch. 21.4 - Prob. 58PCh. 21.4 - The thin rod has a mass of 0.8 kg and a total...Ch. 21.4 - Show that the angular velocity of a body, in terms...Ch. 21.4 - A thin rod is initially coincident with the Z axis...Ch. 21.6 - The gyroscope consists of a uniform 450-g disk D...Ch. 21.6 - The toy gyroscope consists of a rotor R which is...Ch. 21.6 - The top consists of a thin disk that has a weight...Ch. 21.6 - Solve Prob. 2164 when =90.Ch. 21.6 - Prob. 66PCh. 21.6 - Prob. 67PCh. 21.6 - Prob. 68PCh. 21.6 - Prob. 69PCh. 21.6 - Prob. 70PCh. 21.6 - Prob. 71PCh. 21.6 - Prob. 72PCh. 21.6 - Prob. 73PCh. 21.6 - Prob. 74PCh. 21.6 - Prob. 75PCh. 21.6 - Prob. 76PCh. 21.6 - Prob. 77PCh. 21.6 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. If the cord is subjected to a horizontal force of P = 150N, and gear is supported by a fixed pin at O, determine the angular velocity of the gear and the velocity of the 20-kg gear rack in 4 s, starting from rest. The mass of the gear is 50-kg and it has a radius of gyration of ko = 125 mm. Assume that the contact surface between the gear rack and the horizontal plane is smooth. 75 mm P = 150 N 150 mmarrow_forward4. The 10-kg rod AB is pin-connected at A and subjected to a couple moment of M = 15 Nm. If the rod is released from rest when the spring is unstretched at 8 = 30°, determine the angular velocity of the rod at the instant 0 = 60°. Thanks to the roller support at C, the spring always remains horizontal when the rod rotates. A O k= 40 N/m M=15 N·m 0.75 marrow_forwardEach of the two links has a mass of 1.5 kg and a centroidal radius of gyration of 55 mm. The slider at B has a mass of 3.4 kg and moves freely in the vertical guide. The spring has a stiffness of 5.9 kN/m. If a constant torque M = 14.0 N-m is applied to link OA through its shaft at O starting from the rest position at = 45°, determine the angular velocity of OA when 0 = 0. 40 mm 330 mm O Answer: w= i 165 mm 165 mm rad/sarrow_forward
- The 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N·m and is released from rest from the position as shown, determine its angular velocity W (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s². L Your Answer: Answerarrow_forwardThe 21-kg uniform thin hollow square plate is pinned at point O, and its side L = 0.5 m. If it is subjected to the constant moment M = 78 N•m and is released from rest from the position as shown, determine its angular velocity w (in rad/s) when it has rotated 45°. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point. Take g = 9.81 m/s2. `L MV Your Answer: Answerarrow_forward0.4 m T The force of T = 30 N is applied to the Sord of negligible mass. Determine the angular velocity of the 25-kg wheel when the force has been applied for 8 seconds. The wheel has an angular velocity of 2 rad/s before the force is applied. The mass moment of inertia of the wheel is lo=4 kg * m². Angular velocity:arrow_forward
- The slender 9-kg bar AB is horizontal and at rest, and the spring is unstretched. Determine the angular velocity of the bar when it has rotated clockwise 30° after being released. The spring remains vertical during the motion.arrow_forwardThe uniform 80 kg slender rod is at rest in the position shown when P = 450 N is applied. Determine the value of angular velocity, w2 the rod if L1 = 5.5 m and L2 = 6.5 m. A L L2 L1 Barrow_forwardThe cylinder is at rest supported by the spring of stiffness 205 N/m when a torque of 78 Nm is applied as shown. The mass of the cylinder is 2.5 kg and its radius is 205 mm. If the wheel rolls without slipping, find the velocity of the centre of the wheel when it has moved a distance 352 mm up the slope with the angle ẞ= 25°.arrow_forward
- If the cord is subjected to a horizontal force of P = 150 N, and gear is supported by a fixed pin at O,determine the angular velocity of the gear and the velocity of the 20-kg gear rack in 4 s, starting from rest. The mass of the gear is 50 kg and it has a radius of gyration of k0 = 125 mm. Assume that the contact surface between the gear rack and the horizontal plane is smooth.arrow_forwardThe 10-kg uniform slender rod is suspended at rest when the force of F = 150 N is applied to its end. Determine the angular velocity of the rod when it has rotated 180° clockwise from the position shown. The force is always perpendicular to the rod.arrow_forwardThe circular disk of mass m and radius r, is rolling through the bottom of the circular path of radius R. If the disk has an angular velocity determine the force N exerted by the path on the disk.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Power Transmission; Author: Terry Brown Mechanical Engineering;https://www.youtube.com/watch?v=YVm4LNVp1vA;License: Standard Youtube License