Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21.1, Problem 15P
To determine
The moment of inertia of both the rod and disk about the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The uniform rod of length 4b and mass m is bent into the shape shown. The diameter of the rod is small compared with its length.
Determine the moments of inertia of the rod about the three coordinate axes. Use the values m = 7.9 kg and b = 485 mm.
Answers:
1xxx =
i
lyy= i
Izz =
i
kg.m²
kg-m²
kg-m²
Formulas
Moments of Inertia
x= [y²d
ly = fx²dA
Theorem of Parallel Axis
Ixr = 1 + d² A
* axis going through the centroid
x' axis parallel to x going through the point of interest
d minimal distance (perpendicular) between x and x'
ly₁ = 15+d²A
ỹ axis going through the centroid
y' axis parallel to y going through the point of interest
d minimal distance (perpendicular) between y and y'
Composite Bodies
1=Σ 4
All the moments of inertia should
be about the same axis.
Radius of Gyration
k=
3.
Chapter 21 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 21.1 - Show that the sum of the moments of inertia of a...Ch. 21.1 - Prob. 2PCh. 21.1 - Prob. 3PCh. 21.1 - Determine the moments of inertia Ix and Iy of the...Ch. 21.1 - Prob. 5PCh. 21.1 - Determine by direct integration the product of...Ch. 21.1 - Prob. 7PCh. 21.1 - Prob. 8PCh. 21.1 - Prob. 9PCh. 21.1 - Prob. 10P
Ch. 21.1 - Prob. 11PCh. 21.1 - Determine the moment of inertia Ixx of the...Ch. 21.1 - Prob. 13PCh. 21.1 - Prob. 14PCh. 21.1 - Prob. 15PCh. 21.1 - Prob. 16PCh. 21.1 - The bent rod has a weight of 1.5 lb/ft. Locate the...Ch. 21.1 - Prob. 18PCh. 21.1 - Prob. 19PCh. 21.1 - Prob. 20PCh. 21.1 - Prob. 21PCh. 21.3 - If a body contains no planes of symmetry, the...Ch. 21.3 - Prob. 23PCh. 21.3 - The 15-kg circular disk spins about its axle with...Ch. 21.3 - Prob. 25PCh. 21.3 - Prob. 26PCh. 21.3 - Prob. 27PCh. 21.3 - Prob. 28PCh. 21.3 - Prob. 29PCh. 21.3 - Prob. 30PCh. 21.3 - Prob. 31PCh. 21.3 - The 2-kg thin disk is connected to the slender rod...Ch. 21.3 - Prob. 33PCh. 21.3 - Prob. 34PCh. 21.3 - The 200-kg satellite has its center of mass at...Ch. 21.3 - Prob. 36PCh. 21.3 - Prob. 37PCh. 21.3 - Determine the kinetic energy of the 7-kg disk and...Ch. 21.3 - Prob. 39PCh. 21.3 - Prob. 40PCh. 21.4 - Prob. 41PCh. 21.4 - Prob. 42PCh. 21.4 - Prob. 43PCh. 21.4 - Prob. 44PCh. 21.4 - Prob. 45PCh. 21.4 - The assembly is supported by journal bearings at A...Ch. 21.4 - Prob. 47PCh. 21.4 - Prob. 48PCh. 21.4 - Prob. 49PCh. 21.4 - Prob. 50PCh. 21.4 - Prob. 51PCh. 21.4 - Prob. 52PCh. 21.4 - Prob. 53PCh. 21.4 - Prob. 54PCh. 21.4 - Prob. 55PCh. 21.4 - Prob. 56PCh. 21.4 - The blades of a wind turbine spin about the shaft...Ch. 21.4 - Prob. 58PCh. 21.4 - The thin rod has a mass of 0.8 kg and a total...Ch. 21.4 - Show that the angular velocity of a body, in terms...Ch. 21.4 - A thin rod is initially coincident with the Z axis...Ch. 21.6 - The gyroscope consists of a uniform 450-g disk D...Ch. 21.6 - The toy gyroscope consists of a rotor R which is...Ch. 21.6 - The top consists of a thin disk that has a weight...Ch. 21.6 - Solve Prob. 2164 when =90.Ch. 21.6 - Prob. 66PCh. 21.6 - Prob. 67PCh. 21.6 - Prob. 68PCh. 21.6 - Prob. 69PCh. 21.6 - Prob. 70PCh. 21.6 - Prob. 71PCh. 21.6 - Prob. 72PCh. 21.6 - Prob. 73PCh. 21.6 - Prob. 74PCh. 21.6 - Prob. 75PCh. 21.6 - Prob. 76PCh. 21.6 - Prob. 77PCh. 21.6 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Find the moment of inertia and radius of gyration of the section of this bar about an axis parallel to x-axis going through the center of gravity of the bar. The bar is symmetrical about the axis parallel to y-axis and going through the center of gravity of the bar and about the axis parallel to z-axis and going through the center of gravity of the bar. The dimensions of the section are: l=55 mm, h=22 mm The triangle: hT=12 mm, lT=19 mm and the 2 circles: diameter=8 mm, hC=6 mm, dC=8 mm. A is the origin of the referential axis. Provide an organized table and explain all your steps to find the moment of inertia and radius of gyration about an axis parallel to x-axis and going through the center of gravity of the bar. Does the radius of gyration make sense? Enter the y position of the center of gravity of the bar in mm with one decimal.arrow_forwardThe slender bar lies in the x-y plane. Its mass is 6 kg and the material is homogeneous. Use integration to determine its moment of inertia about the z-axisarrow_forward. The radius of gyration of the 10kg body about an axis passing through point G (center of mass) and directed perpendicular to the page is rm = 2m. Determine the mass moment of inertia (kg - m²) of the body about an axis passing through point G and directed perpendicular to the page. 4marrow_forward
- ROBLEM NO.5 Determine the location y of the center of mass G of the assembly and then calculate the moment of inertia about an axis perpendicular to the page and passing through G. The block has a mass of 3 kg and the semi-cylinder has a mass of 5 kg. 400 mm 300 mm 200 mm MacBook Airarrow_forward3. The pendulum shown is made of a 2-kg rod and 6-kg thin plate. Find ya the location of the center of mass G of the pendulum and the moments of inertia about an axis passing through G and an axis passing through point O. yG 2 m G 0.5 m 1 marrow_forwardDetermine the moment of inertia of the wheel about an axis which is perpendicular to the page and passes through point O. The material has a specific weight of 90 lb/ft3.arrow_forward
- 4. Determine the moment of inertia and the radius of Gyration about the axis of rotation for the wheel shown in the figure below. The density of the material can be taken as 7000kg/m³ 100mm 25 mm 50 mm Dia 250mm 300mm Dia Diaarrow_forwardShow using analytical methods how the mass moment of inertia changes for a uniform rod by changing the axis about which it rotates. Z Figure 1 - Uniform Rod Q1 dr Larrow_forwardThe cam consists of a circular cylinder A with a circular hole to reduce its moment of inertia and a circular shaft BC about which it rotates. If the cam is made of cast iron with 7200 kg/m3 density, determine the mass moment of inertia about the z axis. 15 mm 20 mm 20 mm 40 mm 25 mm 50 mm 5 mmarrow_forward
- 1. Determine the moment of inertia about an axis perpendicular to the page and passing through the pin at 0. The thin plate has a hole in its center. Its thickness is 50 mm, and the material has a density of p = 60 kg/m³. What is the radius of gyration about this point? 150 mm 1.40 m 1.40 marrow_forwardThe pendulum is suspended from point O and consists of two bars, each weighing 10 lb. Determine the moment of inertia of the pendulum about the axis through the center of mass G.arrow_forward2. Determine the mass moment of Inertia of the steel bracket about the z-axis which passes through the midline of the base. 3" 2" 6 -1" 1.5 1.5"arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
moment of inertia; Author: NCERT OFFICIAL;https://www.youtube.com/watch?v=A4KhJYrt4-s;License: Standard YouTube License, CC-BY