
In an RLC circuit, these three elements are connected in series: a resistor of 20.0 Ω, a 35.0 mH inductor, and a 50.0 μF capacitor. The ac source of the circuit has an rms voltage of 100.0 V and an angular frequency of 1.0 × 103 rad/s. (a) Find the rms current and the rms voltage across each of the circuit elements, (b) Does the current lead or lag the source voltage? (c) Draw a phasor diagram, (d) Find the average power dissipated.
(a)

The rms current and rms voltage across each of the circuit element.
Answer to Problem 93P
The rms current across each of the circuit element is
Explanation of Solution
Write the expression for capacitive reactance.
Here,
Write the expression for inductive reactance.
Here,
Write the expression for impedance.
Here,
Write the expression for rms current.
Write the expression for rms voltage across resistor.
Write the expression for rms voltage across inductor.
Write the expression for rms voltage across capacitor.
Conclusion:
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Substitute,
Therefore, the average current through the coil during rotation is
(b)

Whether the current lead or lag voltage.
Answer to Problem 93P
Current lags voltage.
Explanation of Solution
The value of inductive reactance is
Conclusion:
Therefore, Current lags voltage.
(c)

Sketch the phasor diagram.
Answer to Problem 93P
The phasor diagram is shown below.
Explanation of Solution
Write the expression for phase angle.
Conclusion:
Substitute,
Therefore, the phasor diagram is.
(d)

The average power dissipated.
Answer to Problem 93P
The average power dissipated is
Explanation of Solution
Write the expression for power dissipated.
Conclusion:
Substitute,
Therefore, the average power dissipated is
Want to see more full solutions like this?
Chapter 21 Solutions
Physics
Additional Science Textbook Solutions
College Physics: A Strategic Approach (3rd Edition)
HUMAN ANATOMY
Cosmic Perspective Fundamentals
Fundamentals Of Thermodynamics
Campbell Essential Biology with Physiology (5th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





