
(a)
The rms voltage across the lightbulb and the power dissipated by the lightbulb, if the lightbulb is on and hair dryer is off.
(a)

Answer to Problem 66P
The rms voltage across the lightbulb is
Explanation of Solution
Apply Kirchhoff’s voltage rule in the circuit to get expression of rms current.
Here,
Write the expression for the rms voltage.
Here,
Substitute
Write the expression for the power dissipated by the lightbulb.
Here,
Substitute
`
Conclusion:
Substitute
Substitute
Therefore, the rms voltage across the lightbulb is
(b)
The rms voltage across the lightbulb, the power dissipated by the lightbulb and rms voltage between point
(b)

Answer to Problem 66P
The rms voltage across the lightbulb is
Explanation of Solution
Write the expression for the rms current.
Here,
Write the expression for the equivalent resistance of the circuit, if both light bulb and hairdryer are on.
Apply Kirchhoff’s voltage rule in the circuit to get expression of rms voltage across lightbulb.
Here,
Write the expression for the power dissipated by lightbulb.
Here,
Write the expression for rms voltage between point
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the rms voltage across the lightbulb is
(c)
The explanation for why lights sometimes dim when an appliance is turned on.
(c)

Answer to Problem 66P
When appliances turned, it draws larger current for small time interval. This increase in current creates larger voltage drop across wires in the wall. This makes voltage drop across other appliances and other circuits in parallel to reduce from normal value. Thus makes lightbulb to dim when appliance is turned on.
Explanation of Solution
A lightbulb shows dimness when voltage drop across it is reduced. When an appliance is turned on, it draws large current for a brief time. The voltage drop across wires in the wall is proportional to the current flowing through them. Thus, when appliance is switched on, voltage drop across the wires in the wall increases and voltage drops across the appliances reduce.
Thus, while this large current flows, voltage drop across the wiring is larger than normal case, and the voltage drop across the appliance and across other circuit in parallel with it is smaller than usual.
(d)
The explanation for why neutral and the ground wires in a junction box are not at same potential even though they are both grounded.
(d)

Answer to Problem 66P
Neutral wires carry current whereas ground wires does not. Since a current flowing through neutral wire, there exists a potential difference between ends of neutral wire. Whereas grounded end always have a zero potential.
Explanation of Solution
In normal case, the no current flows through grounded wire. Potential at any grounded end is always zero. When current flows through the circuit, it flows through hot wire and into appliance, and in order to complete the circuit same current flows through the neutral wire.
This current produces voltage drop across resistance in the neutral wire. Since there is current flowing in the neutral wire, there is a potential difference
Want to see more full solutions like this?
Chapter 21 Solutions
Physics
- ••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forwardThor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forward
- In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forward
- A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forward
- Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





