A Lightning Strike Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud. Figure P21.86 The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 10 8 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike. What is the approximate magnitude of the electric field between the charge center and the ground? A. 4 × 10 4 V/m B. 4 × 10 5 V/m C. 4 × 10 6 V/m D. 4 × 10 7 V/m
A Lightning Strike Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud. Figure P21.86 The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 10 8 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike. What is the approximate magnitude of the electric field between the charge center and the ground? A. 4 × 10 4 V/m B. 4 × 10 5 V/m C. 4 × 10 6 V/m D. 4 × 10 7 V/m
Storm clouds build up large negative charges, as described in the chapter. The charges dwell in charge centers, regions of concentrated charge. Suppose a cloud has –25 C in a 1.0|dash|km|dash|diameter spherical charge center located 10 km above the ground, as sketched in Figure P21.86. The negative charge center attracts a similar amount of positive charge that is spread on the ground below the cloud.
Figure P21.86
The charge center and the ground function as a charged capacitor, with a potential difference of approximately 4 × 108 V. The large electric field between these two "electrodes" may ionize the air, leading to a conducting path between the cloud and the ground. Charges will flow along this conducting path, causing a discharge of the capacitor-a lightning strike.
What is the approximate magnitude of the electric field between the charge center and the ground?
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.