EBK COLLEGE PHYSICS
3rd Edition
ISBN: 9780321989246
Author: Knight
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 21, Problem 70GP
A proton is released from rest at the positive plate of a parallel-plate capacitor. It crosses the capacitor and reaches the negative plate with a speed of 50,000 m/s. What will be the proton’s final speed if the experiment is repeated with double the amount of charge on each capacitor plate?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2. A)How much time does it take to reach full speed? B) How far does Bowser travel while accelerating?
The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. I believe side 1 is 60 degrees but could be wrong. Thank you.
After the countdown at the beginning of a Mario Kart race, Bowser slams on the gas, taking off from rest. Bowser get up to a full speed of 25.5 m/s due to an acceleration of 10.4 m/s2.
Chapter 21 Solutions
EBK COLLEGE PHYSICS
Ch. 21 - By moving a 10 nC charge from point A to point B,...Ch. 21 - Charge q is fired through a small hole in the...Ch. 21 - Why is the potential energy of two opposite...Ch. 21 - An electron (q = e) completes half of a circular...Ch. 21 - An electron moves along the trajectory from i to f...Ch. 21 - The graph in Figure Q21.61Q shows the electric...Ch. 21 - As shown in Figure Q21.7, two protons are launched...Ch. 21 - Each part of Figure Q21.8 shows one or more point...Ch. 21 - Figure Q21.9 shows two points inside a capacitor....Ch. 21 - A capacitor with plates separated by distanced is...
Ch. 21 - Rank in order, from most positive to most...Ch. 21 - Figure Q21.12 shows two points near a positive...Ch. 21 - A. Suppose that E = 0, throughout some region of...Ch. 21 - Rank in order, from largest to smallest, the...Ch. 21 - Figure Q21.16 shows an electric field diagram....Ch. 21 - Figure Q21.17 shows a negatively charged...Ch. 21 - Rank in order, from largest to smallest, the...Ch. 21 - A parallel-plate capacitor with plate separation d...Ch. 21 - A proton is launched from point 1 in Figure Q21...Ch. 21 - A 1.0 nC positive point charge is located at point...Ch. 21 - A 100 V battery is connected across the plates of...Ch. 21 - The electric potential is 300 V at x = 0 cm, is...Ch. 21 - What is the potential at point c? A. 400 v B. 350...Ch. 21 - At which point, a, b, or c, is the magnitude of...Ch. 21 - What is the approximate magnitude of the electric...Ch. 21 - The direction of the electric field at point b is...Ch. 21 - A +10 nC charge is moved from point c to point a....Ch. 21 - A bug zapper consists of two metal plates...Ch. 21 - An atom of helium and one of argon are singly...Ch. 21 - The dipole moment of the heart is shown at a...Ch. 21 - Moving a charge from point A, where the potential...Ch. 21 - The graph in Figure P21.2 shows the electric...Ch. 21 - It takes 3.0 J of work to move a 15 nC charge from...Ch. 21 - A 20 nC charge is moved from a point where V = 150...Ch. 21 - At one point in space, the electric potential...Ch. 21 - An electron has been accelerated from rest through...Ch. 21 - A proton has been accelerated from rest through a...Ch. 21 - What potential difference is needed to accelerate...Ch. 21 - An electron with an initial speed of 500,000 m/s...Ch. 21 - A proton with an initial speed of 800,000 m/s is...Ch. 21 - The electric potential at a point that is halfway...Ch. 21 - A 2.0 cm 2.0 cm parallel-plate capacitor has a...Ch. 21 - Two 2.00 cm 2.00 cm plates that form a...Ch. 21 - A. In Figure P21.14, which capacitor plate, left...Ch. 21 - A +25 nC charge is at the origin. How much farther...Ch. 21 - A. What is the electric potential at points A, B,...Ch. 21 - A 1.0-cm-diameter sphere is charged to a potential...Ch. 21 - What is the electric potential at the point...Ch. 21 - a. What is the potential difference between the...Ch. 21 - A. In Figure P21.20, which point, A or B, has a...Ch. 21 - In Figure P21.21, the electric potential at point...Ch. 21 - What is the potential difference between xi = 10...Ch. 21 - What are the magnitude and direction of the...Ch. 21 - What are the magnitude and direction of the...Ch. 21 - Two 2.0 cm 2.0 cm square aluminum electrodes,...Ch. 21 - An uncharged capacitor is connected to the...Ch. 21 - You need to construct a 100 pF capacitor for a...Ch. 21 - A switch that connects a battery to a 10 F...Ch. 21 - What is the voltage of a battery that will charge...Ch. 21 - Two electrodes connected to a 9.0 V battery are...Ch. 21 - Initially, the switch in Figure P21 .33 is open...Ch. 21 - A 1.2 nF parallel-plate capacitor has an air gap...Ch. 21 - A science-fair radio uses a homemade capacitor...Ch. 21 - A 25 pF parallel-plate capacitor with an air gap...Ch. 21 - Two 2.0-cm-diameter electrodes with a 0.1...Ch. 21 - A parallel-plate capacitor is connected to a...Ch. 21 - A parallel-plate capacitor is charged by a 12.0 V...Ch. 21 - To what potential should you charge a 1.0 F...Ch. 21 - A pair of 10 F capacitors in a high-power laser...Ch. 21 - Capacitor 2 has half the capacitance and twice the...Ch. 21 - Two uncharged metal spheres, spaced 15.0 cm apart,...Ch. 21 - 50 pJ of energy is stored in a 2.0 cm 2.0 cm 2.0...Ch. 21 - A 2.0-cm-diameter parallel-plate capacitor with a...Ch. 21 - What is the change in electric potential energy of...Ch. 21 - What is the potential difference V34 in Figure...Ch. 21 - A 50 nC charged particle is in a uniform electric...Ch. 21 - At a distance r from a point charge, the electric...Ch. 21 - The 4000 V equipotential surface is 10.0 cm...Ch. 21 - What is the electric potential energy of the...Ch. 21 - Two point charges 2.0 cm apart have an electric...Ch. 21 - Two positive point charges are 5.0 cm apart. If...Ch. 21 - A +3.0 nC charge is at x = 0 cm and a 1.0 nC...Ch. 21 - A 3.0 nC charge is on the x-axis at x = 9 cm and a...Ch. 21 - A 10.0 nC point charge and a +20.0 nC point charge...Ch. 21 - A 2.0-mm-diameter glass bead is positively...Ch. 21 - In a semiclassical model of the hydrogen atom, the...Ch. 21 - What is the electric potential at the point...Ch. 21 - a. What is the electric potential at point A in...Ch. 21 - A protons speed as it passes point A is 50,000...Ch. 21 - A proton follows the path shown in Figure P21.63....Ch. 21 - Electric outlets have a voltage of approximately...Ch. 21 - Estimate the magnitude of the electric field in a...Ch. 21 - A Na+ion moves from inside a cell, where the...Ch. 21 - Suppose that a molecular ion with charge 10e is...Ch. 21 - The electric field strength is 50,000 V/m inside a...Ch. 21 - A parallel-plate capacitor is charged to 5000 V. A...Ch. 21 - A proton is released from rest at the positive...Ch. 21 - The electric field strength is 20,000 V/m inside a...Ch. 21 - In the early 1900s, Robert Millikan used small...Ch. 21 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 21 - In proton-beam therapy, a high-energy beam of...Ch. 21 - A 2.5-mm-diameter sphere is charged to 4.5 nC. An...Ch. 21 - A proton is fired from far away toward the nucleus...Ch. 21 - Two 10.0-cm-diameter electrodes 0.50 cm apart form...Ch. 21 - Two 10.0-cm-diameter electrodes 0.50 cm apart form...Ch. 21 - Determine the magnitude and direction of the...Ch. 21 - Figure P21.81 shows the electric potential on a...Ch. 21 - A capacitor consists of two 6.0-cm-diameter...Ch. 21 - The dielectric in a capacitor serves two purposes....Ch. 21 - The highest magnetic fields in the world are...Ch. 21 - The flash unit in a camera uses a special circuit...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...Ch. 21 - A Lightning Strike Storm clouds build up large...
Additional Science Textbook Solutions
Find more solutions based on key concepts
[14.110] The following mechanism has been proposed for the gas-phase reaction of chloroform (CHCI3) and chlorin...
Chemistry: The Central Science (14th Edition)
Which coastal area experiences the largest tidal range difference in height between the high tide and low tide?...
Applications and Investigations in Earth Science (9th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
Lead ions can be precipitate form solution with NaCl according to the reaction: Pb2(aq)+2NaCl(aq)PbCl2(s)+2Na+(...
Introductory Chemistry (6th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Side 1 has an area of 1.90 m^2, Side 2 has an area of 3.90 m^2, the electric field in magnitude is around 215 N/C. Please find the electric flux magnitude through side 1 and 2 combined if the angle (theta) made between the electric field with side 2 is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forwardThe drawing in the image attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m^2, while Surface (2) has an area of 3.90 m^2. The electric field in magnitude of 215 N/C. Please find the magnitude of the electric flux through surface (with both 1 and 2 combined) if the angle (theta) made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
- According to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forwardAccording to a grade 11 Physics SPH3U course Kinematics, Dynamics, and Energy answer the following questionarrow_forward
- Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.arrow_forwardThree point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.arrow_forwardThe drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.arrow_forward
- A car driving at 27m/s veers to the left to avoid a deer in the road. The maneuver takes 2.0s and the direction of travel is altered by 20 degrees. What is the average acceleration during the constant speed maneuver? Do this in accordance with the example in the chapter.arrow_forwardNo No No Chatgpt pls will upvotearrow_forward2 C01: Physical Quantities, Units and Measurementscobris alinu zotinUD TRO Bendemeer Secondary School Secondary Three Express Physics Chpt 1: Physical Quantities, Unit and Measurements Assignment Name: Chen ShiMan loov neowled soria 25 ( 03 ) Class: 3 Respect 6 Date: 2025.01.22 1 Which group consists only of scalar quantities? ABCD A acceleration, moment and energy store distance, temperature and time length, velocity and current mass, force and speed B D. B Which diagram represents the resultant vector of P and Q? lehtele 시 bas siqpeq olarist of beau eldeo qirie-of-qi P A C -B qadmis rle mengaib priwollot erT S Quilons of qira ono mont aboog eed indicator yh from West eril to Inioqbim srij enisinoo MA (6) 08 bas 8A aldao ni nolent or animaleb.gniweb slepe eld 260 km/h D 1 D. e 51arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY