Interpretation:
The rate law for given reaction to be written and simplificationf rate law to be checked, along with the half-lifeaccording to the given conditions, is to be determined.
Concept introduction:
The study of reaction rates, rearrangement of atoms, and the effect of various variables in a
A half-life is the quantity of time it takes for half of a substance to undergo some specified process.
The half-life for the second order reaction is as follows:
The rate law for a chemical reactionis defined as an equation that relates the reaction rate with the concentrations or partial pressures of the reactants.
The rate law is given by:
Answer to Problem 84AP
Solution:
a)
b)
c)
Explanation of Solution
a) The rate law for the reaction
The rate law for a given reaction is as follows:
Here,
It suggests that two molecules of NO are colliding with a molecule of oxygen and forming nitrogen dioxide. This reaction has two or more elementary steps.
Explanation:
b) The rate law can be simplified is to be checked and if so simplified rate law to be written.
A sample of air at a certain temperature is contaminated with
In thegivenreaction, two molecules of
The rate law is given as follows:
Here,
Given information: A sample of air at a certain temperature is contaminated with
Explanation:
c) The half-lifeto be estimated if the initial concentration of NO were 10 ppm
As this reaction is a second-order reaction, the half-life time for this reaction is written as follows:
Here,
The sample is contaminated with
The expression of half-life, by substituting these values in the above equation, can be written as follows:
The initial concentration of
By dividing
Substitute the values of
Therefore, the half-life for an initial concentration of
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry
- Define stability from both a kinetic and thermodynamic perspective. Give examples to show the differences in these concepts.arrow_forward11.93 On a particular day, the ozone level in Milwaukee exceeded the EPAs 1-hour standard of 0.12 ppin by 10 ppb. How many ozone molecules would be present in 1 liter of air at the detection site?arrow_forwardAt 573 K, gaseous NO2(g) decomposes, forming NO(g) and O2(g). If a vessel containing NO2(g) has an initial concentration of 1.9 102 mol/L, how long will it take for 75% of the NO2(g) to decompose? The decomposition of NO2(g) is second-order in the reactant and the rate constant for this reaction, at 573 K, is 1.1 L/mol s.arrow_forward
- Assume that the formation of nitrogen dioxide, 2 NO(g) + 02(g) – 2 NO2(g) is an elementary reaction. (a) Write the rate law for this reaction. (Rate expressions take the general form: rate = k. [A]ª . [B]b.) chemPad О Help Greek - rate=k•[NO]2.[02] rate=k*[NO]^2*[O_2] Correct. (b) A sample of air at a certain temperature is contaminated with 1.9 ppm of NO by volume. Under these conditions, can the rate law be simplified? If so, write the simplified rate law. If not, repeat your answer from above. (Rate expressions take the general form: rate = k . [A]ª . [B]b. Use k' for the new rate constant as needed.) chemPad O Help Greek - rate=k':[NO]2 rate=k*[NO]^2 Correct. (c) Under the conditions described in (b), the half-life of the reaction has been estimated to be 6.7x103 min. What would the half-life be if the initial concentration of NO were 12.4 ppm? 4.0 |1030192 X min Supporting Materials Periodic Table Constants and E Supplemental Dataarrow_forwardThe reaction 2 NO(g) + Cl2(g) → 2 NOCl has the following rate law: Rate = k[NO]2 [Cl2]. The initial speed of the reaction was found to be 5.72×10‒6 M/s when the reaction was carried out at 25 °C with initial concentrations of 0.500 M NO and 0.250 M Cl2. What is the value of k?(a) 1.83×10‒4(b) 1.09×104(c) 9.15×10‒5(d) 5.72×10‒6arrow_forwardConsider the following reaction:2 NO(g) + 2 H2(g)--->N2(g) + 2 H2O(g)(a) The rate law for this reaction is first order in H2 andsecond order in NO. Write the rate law. (b) If the rateconstant for this reaction at 1000 K is 6.0 x 104 M-2 s-1,what is the reaction rate when [NO] = 0.035 M and[H2] = 0.015 M? (c) What is the reaction rate at 1000 Kwhen the concentration of NO is increased to 0.10 M,while the concentration of H2 is 0.010 M? (d) What is thereaction rate at 1000 K if [NO] is decreased to 0.010 M and[H2] is increased to 0.030 M?arrow_forward
- Consider the following reaction: 4 HBr(g) + O2(g) 2 H2O(g) + 2 Br2(g)(a) The rate law for this reaction is first order in HBr(g) and first order in O2(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 8.80e+03, what is the reaction rate when [HBr(g)] = 0.00429 M and [O2(g)] = 0.00758 M?Rate = _______ M/s.(c) What is the reaction rate when the concentration of HBr(g) is doubled, to 0.00858 M while the concentration of O2(g) is 0.00758 M?Rate = _______ M/sarrow_forward(a) For a reaction, A + B → Product, the rate law is given by, Rate = k[A]1[B]2. What is the order of the reaction?(b) Write the unit of rate constant ‘k’ for the first order reaction.arrow_forwardA certain decomposition reaction has a half-life that depends on the initial concentration of the reactant, and its rate is observed to slow down as the reaction proceeds. Identify which statement is most likely correct for this reaction and explain why the other statements are incorrect. O2(g) + 2 NO(g) → 2 NO2(g) (i)The half-life of the reaction increases as the initial concentration increases. (ii)A doubling of the initial concentration of the reactant results in a quadrupling of the rate. (iii)A plot of the natural log of the concentration of the reactant as a function of time is linear.arrow_forward
- Consider the following reaction: O2(g) + 2 NO(g) 2 NO2(g)(a) The rate law for this reaction is first order in O2(g) and second order in NO(g). What is the rate law for this reaction?(b) If the rate constant for this reaction at a certain temperature is 7840, what is the reaction rate when [O2(g)] = 0.0162 M and [NO(g)] = 0.0299 M?Rate = _____ M/s.(c) What is the reaction rate when the concentration of O2(g) is doubled, to 0.0324 M while the concentration of NO(g) is 0.0299 M?Rate = _____ M/sarrow_forwardThe reaction O₂(g) + 2 NO(g) → 2 NO₂(g) was studied at a certain temperature with the following results: (a) What is the rate law for this reaction? O Ratek [0₂(9)] [NO(g)] O Ratek [0₂(9)]² [NO(g)] O Rate = k [0₂(9)] [NO(g)]² O Ratek [0₂(9)]² [NO(g)]² O Ratek [0₂(9)] [NO(g)]³ O Rate = k [O₂(g)]* [NO(g)] (b) What is the value of the rate constant? Experiment [0₂(9)] (M) 0.0235 0.0235 0.0470 0.0470 [NO(g)] (M) 0.0235 0.0470 0.0235 0.0470 Rate (M/S) 0.158 0.633 0.317 1.27 (c) What is the reaction rate when the concentration of O₂(g) is 0.0318 M and that of NO(g) is 0.0649 M if the temperature is the same as that used to obtain the data shown above?arrow_forwardBe sure to answer all parts. The decomposition of NOBr is studied manometrically because the number of moles of gas changes; it cannot be studied colorimetrically because both NOBR and Br, are reddish-brown. 2NOBr(g) → 2NO(g) + Br2(g) Use the data below to make the following determinations: (a) the average rate of decomposition of NOBr over the entire experiment. (b) the average rate of decomposition of NOBr between 2.00 and 4.00 seconds. Time (s) INOB1] (mol/L) 0.00 0.0100 2.00 0.0071 4.00 0.0055 6.00 0.0045 8.00 0.0038 10.00 0.0033 The rates of decomposition of NOBr are (a) mol L-1 s-1 (b) mol L-1 s-1arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co