
Differential Equations: An Introduction to Modern Methods and Applications
3rd Edition
ISBN: 9781118531778
Author: James R. Brannan, William E. Boyce
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.1, Problem 7P
In each of Problems
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Design a PDA recognizing each of the following languages and draw its state diagram.
Note that the transition function must be in the format of “a, b →c", namely we can only push/pop one symbol
into/from the stack one time upon one input symbol. You will receive 0 point if you push/pop multiple symbols
into/from the stack one time upon one input symbol.
(1) {w|wa"b", n is odd}
=
(2) {w|w=w², length of w is odd and Σ = {a,b} }
(3) {w|w= = a²b²n, n ≥1 }
(4) {w|w=
=a^bn+mcm, n≥0, m ≥ 1 }
(5) {w|w=a²b³n, n≥0}
(6) {w|w= = a¹³, n ≥ 1, m≥ 1 and n‡m }
Hint: two cases: n > m and n
[)
Hwk 29
✗
WHwk 30 (MA 244-03) (SP X
-
Logout Cengage Learning X
MA244-03 Syllabus_Sprin X
b Answered: [) Hwk 29 Hwk X
https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606609
4. [-/3 Points]
DETAILS
MY NOTES
LARLINALG8 7.4.013.
Solve the system of first-order linear differential equations. (Use C1 and C2 as constants.)
Y1' = -4Y1
Y2' =
-12
(y1(t), Y2(t)) = (
3
Need Help? Read It
SUBMIT ANSWER
5. [-/3 Points]
DETAILS
MY NOTES
LARLINALG8 7.4.019.
Solve the system of first-order linear differential equations. (Use C1, C2, C3, and C4 as constants.)
Y1' = 6y1
Y2' =
2y2
Y3' = -643
Y4' = -2y4
=
(y1(t), y2(t), y3(t), Y4(t)) =
Need Help? Read It
SUBMIT ANSWER
G Use the Principal Axes The X G cot(0) - Google Search
☑
B
90%
+
ASK YOUR TEACHER
PRACTICE ANOTHER
ill
ASK YOUR TEACHER
PRACTICE ANOTHER
6. [-/4 Points]
DETAILS
MY NOTES
LARLINALG8 7.4.023.
Solve the system of first-order linear differential equations. (Use C1 and C2 as constants.)
ASK YOUR TEACHER
Y1' = Y1 + 5y2
Y2'…
a. Find the value of A.b. Find pX(x) and py(y).c. Find pX|y(x|y) and py|X(y|x)d. Are x and y independent? Why or why not?
Chapter 2 Solutions
Differential Equations: An Introduction to Modern Methods and Applications
Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems through , solve the given...Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems through , solve the given...Ch. 2.1 - In each of Problems through , solve the given...Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems through , solve the given...Ch. 2.1 - In each of Problems through , solve the given...
Ch. 2.1 - In each of Problems 1 through 12, solve the given...Ch. 2.1 - In each of Problems through , solve the given...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems 13 through 28: (a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems 13 through 28: (a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems 13 through 28: (a) Find the...Ch. 2.1 - In each of Problems 13 through 28: (a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In each of Problems 13 through 28: (a) Find the...Ch. 2.1 - In each of Problems through :
(a) Find the...Ch. 2.1 - In Problems through , obtain the requested...Ch. 2.1 - In Problems 29 through 36, obtain the requested...Ch. 2.1 - In Problems through , obtain the requested...Ch. 2.1 - In Problems 29 through 36, obtain the requested...Ch. 2.1 - In Problems through , obtain the requested...Ch. 2.1 - In Problems 29 through 36, obtain the requested...Ch. 2.1 - In Problems through , obtain the requested...Ch. 2.1 - In Problems 29 through 36, obtain the requested...Ch. 2.1 - Solve the equation dydx=ay+bcy+d, where a,b,c, and...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12:
Draw a...Ch. 2.2 - In each of Problems 1 through 12:
Draw a...Ch. 2.2 - In each of Problems 1 through 12:
Draw a...Ch. 2.2 - In each of Problems 1 through 12:
Draw a...Ch. 2.2 - In each of Problems 1 through 12:
Draw a...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 1 through 12: Draw a direction...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 13 through 20, find the...Ch. 2.2 - In each of Problems 21 through 23:
Draw a...Ch. 2.2 - In each of Problems 21 through 23:
Draw a...Ch. 2.2 - In each of Problems 21 through 23: Draw a...Ch. 2.2 - In each of Problems 21 through 23:
Draw a...Ch. 2.2 - In each of Problems 24 through 26:
Draw a...Ch. 2.2 - In each of Problems 24 through 26: Draw a...Ch. 2.2 - In each of Problems 24 through 26:
Draw a...Ch. 2.2 - Consider the initial value problem
Find the...Ch. 2.2 - Consider the initial value problem
Find the value...Ch. 2.2 - Consider the initial value problem...Ch. 2.2 - Find the value of y0 for which the solution of the...Ch. 2.2 - Consider the initial value problem
Find the value...Ch. 2.2 - Show that all solutions of [Eq. (36) of the text]...Ch. 2.2 - Show that if andare positive constants, and b is...Ch. 2.2 - In each of Problems 34 through 37, construct a...Ch. 2.2 - In each of Problems 34 through 37, construct a...Ch. 2.2 - In each of Problems 34 through 37, construct a...Ch. 2.2 - In each of Problems 34 through 37, construct a...Ch. 2.2 - Consider the initial value problem...Ch. 2.2 - Variation of Parameters. Consider the following...Ch. 2.2 - In each of Problems 40 through 43 use the method...Ch. 2.2 - In each of Problems 40 through 43 use the method...Ch. 2.2 - In each of Problems 40 through 43 use the method...Ch. 2.2 - In each of Problems 40 through 43 use the method...Ch. 2.3 - Consider a tank used in certain hydrodynamic...Ch. 2.3 - A tank initially contains 200L of pure water. A...Ch. 2.3 - A tank originally contains gal of fresh water....Ch. 2.3 - A tank with a capacity of originally contains of...Ch. 2.3 - A tank contains of water and of salt. Water...Ch. 2.3 - Suppose that a tank containing a certain liquid...Ch. 2.3 - An outdoor swimming pool loses 0.05 of its water...Ch. 2.3 -
Cholesterol is produced by the body for the...Ch. 2.3 - Imagine a medieval world. In this world a Queen...Ch. 2.3 - Suppose an amount is invested at an annual rate...Ch. 2.3 - A young person with no initial capital invests ...Ch. 2.3 - A homebuyer can afford to spend no more than on...Ch. 2.3 - A recent college graduate borrows 100,000 at an...Ch. 2.3 - A Difference Equation. In this problem, we...Ch. 2.3 - An important tool in archaeological research is...Ch. 2.3 - The population of mosquitoes in a certain area...Ch. 2.3 - Suppose that a certain population has growth rate...Ch. 2.3 - Suppose that a certain population satisfies the...Ch. 2.3 - Newtons law of cooling states that the temperature...Ch. 2.3 - Heat transfer from a body to its surrounding by...Ch. 2.3 - Consider a lake of constant volume containing at...Ch. 2.3 - A ball with mass 0.25 kg is thrown upward with...Ch. 2.3 - Assume that conditions are as Problemexcept that...Ch. 2.3 - Assume that conditions are as in Problem 22 except...Ch. 2.3 - A skydiver weighing 180 lb (including equipment)...Ch. 2.3 - A rocket sled having an initial speed of mi/h is...Ch. 2.3 - A body of constant mass is projected vertically...Ch. 2.3 - Prob. 28PCh. 2.3 - Prob. 29PCh. 2.3 - A mass of 0.40 kg is dropped from rest in a medium...Ch. 2.3 - Suppose that a rocket is launched straight up from...Ch. 2.3 - Let and , respectively, be the horizontal and...Ch. 2.3 - A more realistic model (than that in Problem 32)...Ch. 2.3 - Brachistochrone Problem. One of the famous...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - Existence and uniqueness of Solutions. In each of...Ch. 2.4 - In each of Problem through, state where in -...Ch. 2.4 - In each of Problem through, state where in -...Ch. 2.4 - In each of Problem through, state where in -...Ch. 2.4 - In each of Problem 7 through 12, state where in...Ch. 2.4 - In each of Problem through, state where in -...Ch. 2.4 - In each of Problem through, state where in -...Ch. 2.4 - Consider the initial value problem y=y1/3,y(0)=0...Ch. 2.4 -
Verify that both and are solutions of the...Ch. 2.4 - Dependence of Solutions on Initial Conditions. In...Ch. 2.4 - Dependence of Solutions on Initial Conditions. In...Ch. 2.4 - Dependence of Solutions on Initial Conditions. In...Ch. 2.4 - Dependence of Solutions on Initial Conditions. In...Ch. 2.4 - In each of Problem 19 through 22, draw a direction...Ch. 2.4 - In each of Problem 19 through 22, draw a direction...Ch. 2.4 - In each of Problem through, draw a direction...Ch. 2.4 - In each of Problem through, draw a direction...Ch. 2.4 -
Show that is a solution of and that is also a...Ch. 2.4 - Show that if y=(t) is a solution of y+p(t)y=0,...Ch. 2.4 - Let y=y1(t) be a solution of y+p(t)y=0, (i) and...Ch. 2.4 -
Show that the solution (7) of the general...Ch. 2.4 - Discontinuous Coefficients. Linear differential...Ch. 2.4 - Discontinuous Coefficients. Linear differential...Ch. 2.4 - Consider the initial value problem
...Ch. 2.5 - Suppose that a certain population obeys the...Ch. 2.5 - Another equation that has been used to model...Ch. 2.5 - (a) Solve the Gompertz equation subject to the...Ch. 2.5 - A pond forms as water collects in a conical...Ch. 2.5 - Consider a cylindrical water tank of constant...Ch. 2.5 - Epidemics. The use of mathematical methods to...Ch. 2.5 - Epidemics. The use of mathematical methods to...Ch. 2.5 - Epidemics. The use of mathematical methods to...Ch. 2.5 - Chemical Reactions. A second order chemical...Ch. 2.5 - Bifurcation Points. For an equation of the form...Ch. 2.5 - Bifurcation Points. For an equation of the form
...Ch. 2.5 - Bifurcation Points. For an equation of the form...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem 1 through 12:...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem 1 through 12:...Ch. 2.6 - Exact Equations. In each of Problem 1 through 12:...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem 1 through 12:...Ch. 2.6 - Exact Equations. In each of Problem 1 through 12:...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - Exact Equations. In each of Problem through...Ch. 2.6 - In each of Problem and , solve the given initial...Ch. 2.6 - In each of Problem 13 and 14, solve the given...Ch. 2.6 - In each of Problem 15 and 16, find the value of b...Ch. 2.6 - In each of Problem 15 and 16, find the value of b...Ch. 2.6 - Assume that Eq. (6) meets the requirements of...Ch. 2.6 - Show that any separable equation is also exact.
Ch. 2.6 - Integrating Factor. In each of Problem through...Ch. 2.6 - Integrating Factor. In each of Problem through...Ch. 2.6 - Integrating Factor. In each of Problem 19 through...Ch. 2.6 - Integrating Factor. In each of Problem through...Ch. 2.6 - Show that if (NxMy)/M=Q, where Q is function of y...Ch. 2.6 - Show that if , where depends on the quantity ...Ch. 2.6 - In each of Problem 25 through 31: Find an...Ch. 2.6 - In each of Problem through:
Find an integrating...Ch. 2.6 - In each of Problem 25 through 31: Find an...Ch. 2.6 - In each of Problem 25 through 31: Find an...Ch. 2.6 - In each of Problem through:
Find an integrating...Ch. 2.6 - In each of Problem 25 through 31: Find an...Ch. 2.6 - In each of Problem 25 through 31: Find an...Ch. 2.6 - Use the integrating factor (x,y)=[xy(2x+y)]1 to...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - Homogeneous Differential Equations. In each of...Ch. 2.7 - In problem 11 and 12, solve the given initial...Ch. 2.7 - In problem and, solve the given initial value...Ch. 2.7 - In each of Problems 13 through 22: Write the...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems 13 through 22: Write the...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - In each of Problems 13 through 22: Write the...Ch. 2.7 - In each of Problems through:
Write the Bernoulli...Ch. 2.7 - A differential equation of the form...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems ...Ch. 2.7 - Mixed Practice. In each of Problems 24 through 36:...Ch. 2.P1 - Constant Effort Harvesting. At a given level of...Ch. 2.P1 - Constant Yield Harvesting. In this problem, we...Ch. 2.P2 - Derive Eq. (3) from Eqs. (1) and (2) and show that...Ch. 2.P2 - Additional processes due to biotic and abiotic...Ch. 2.P2 - Show that when , the source has an infinite...Ch. 2.P2 - Assume the following values for the parameters;...Ch. 2.P2 - Effects of Partial Source Remediation.
Assume...Ch. 2.P3 - Simulate five sample trajectories of Eq. (1) for...Ch. 2.P3 - Use the difference equation (4) to generate an...Ch. 2.P3 - VarianceReduction by Antithetic Variates. A simple...
Additional Math Textbook Solutions
Find more solutions based on key concepts
CHECK POINT 1 In a survey on musical tastes, respondents were asked: Do you listed to classical music? Do you l...
Thinking Mathematically (6th Edition)
Women’s Heights Suppose college women’s heights are approximately Normally distributed with a mean of 65 inches...
Introductory Statistics
If n is a counting number, bn, read______, indicates that there are n factors of b. The number b is called the_...
Algebra and Trigonometry (6th Edition)
8. Effect of Blinding Among 13,200 submitted abstracts that were blindly evaluated (with authors and institutio...
Elementary Statistics
At what points are the functions in Exercises 13–32 continuous?
29.
University Calculus: Early Transcendentals (4th Edition)
In track, the second lane from the inside of the track is longer than the inside lane. Use this information to ...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Analyze the residuals of a linear regression model and select the best response.Criteria is simple evaluation of possible indications of an exponential model vs. linear model) no, the residual plot does not show a curve yes, the residual plot does not show a curve yes, the residual plot shows a curve no, the residual plot shows a curve I selected: yes, the residual plot shows a curve and it is INCORRECT. Can u help me understand why?arrow_forwardYou have been hired as an intern to run analyses on the data and report the results back to Sarah; the five questions that Sarah needs you to address are given below. please do it step by step on excel Does there appear to be a positive or negative relationship between price and screen size? Use a scatter plot to examine the relationship. Determine and interpret the correlation coefficient between the two variables. In your interpretation, discuss the direction of the relationship (positive, negative, or zero relationship). Also discuss the strength of the relationship. Estimate the relationship between screen size and price using a simple linear regression model and interpret the estimated coefficients. (In your interpretation, tell the dollar amount by which price will change for each unit of increase in screen size). Include the manufacturer dummy variable (Samsung=1, 0 otherwise) and estimate the relationship between screen size, price and manufacturer dummy as a multiple…arrow_forward(a) (b) (c) (d) de unique? Answer the following questions related to the linear system x + y + z = 2 x-y+z=0 2x + y 2 3 rewrite the linear system into the matrix-vector form A = 5 Fuse elementary row operation to solve this linear system. Is the solution use elementary row operation to find the inverse of A and then solve the linear system. Verify the solution is the same as (b). give the null space of matrix A and find the dimension of null space. give the column space of matrix A and find the dimension of the column space of A (Hint: use Rank-Nullity Theorem).arrow_forward
- please explain in a clear wayarrow_forward[) Hwk 29 SUBMIT ANSWEK Hwk 30 - (MA 244-03) (SP25) || X - Mind Tap Cengage Learning ☑ MA244-03_Syllabus_Spring, 20 × b Answered: [) 90% Hwk 29 Hwk X Rotation of Axes Example - Elimi X + https://www.webassign.net/web/Student/Assignment-Responses/last?dep=36606609 B שי 90% 2. [-/3 Points] DETAILS MY NOTES LARLINALG8 7.4.003. Use the age transition matrix L and age distribution vector X1 to find the age distribution vectors X2 and x3. 0 34 x2 = X3 = L = ↓ ↑ 1 0 0 x1 = 1 0 0 2 20 20 20 Then find a stable age distribution vector. x = t ↓ 1 Need Help? Read It SUBMIT ANSWER 3. [-/3 Points] DETAILS MY NOTES LARLINALG8 7.4.004. Use the age transition matrix L and age distribution vector X1 to find the age distribution vectors x2 and ×3. ill { ASK YOUR TEACHER PRACTICE ANOTHER ASK YOUR TEACHER PRACTICE ANOTHERarrow_forwardHere is data with as the response variable. x y54.4 19.124.9 99.334.5 9.476.6 0.359.4 4.554.4 0.139.2 56.354 15.773.8 9-156.1 319.2Make a scatter plot of this data. Which point is an outlier? Enter as an ordered pair, e.g., (x,y). (x,y)= Find the regression equation for the data set without the outlier. Enter the equation of the form mx+b rounded to three decimal places. y_wo= Find the regression equation for the data set with the outlier. Enter the equation of the form mx+b rounded to three decimal places. y_w=arrow_forward
- Points z1 and z2 are shown on the graph.z1 is at (4 real,6 imaginary), z2 is at (-5 real, 2 imaginary)Part A: Identify the points in standard form and find the distance between them.Part B: Give the complex conjugate of z2 and explain how to find it geometrically.Part C: Find z2 − z1 geometrically and explain your steps.arrow_forward[) Hwk 29 SUBMIT ANSWER Hwk 29 - (MA 244-03) (SP25) || X - Mind Tap Cengage Learning ☑ MA244-03_Syllabus_Spring, 20 × b Answered: ( Homework#8 | ba X + https://www.webassign.net/web/Student/Assignment-Responses/submit?dep=36606608&tags=autosave#question3706218_2 2. [-/2.85 Points] DETAILS MY NOTES LARLINALG8 7.3.003. Prove that the symmetric matrix is diagonalizable. (Assume that a is real.) 0 0 a A = a 0 a 0 0 Find the eigenvalues of A. (Enter your answers as a comma-separated list. Do not list the same eigenvalue multiple times.) λ= Find an invertible matrix P such that P-1AP is diagonal. P = Which of the following statements is true? (Select all that apply.) ☐ A is diagonalizable because it is a square matrix. A is diagonalizable because it has a determinant of 0. A is diagonalizable because it is an anti-diagonal matrix. A is diagonalizable because it has 3 distinct eigenvalues. A is diagonalizable because it has a nonzero determinant. A is diagonalizable because it is a symmetric…arrow_forwardA polar curve is represented by the equation r1 = 7 + 4cos θ.Part A: What type of limaçon is this curve? Justify your answer using the constants in the equation.Part B: Is the curve symmetrical to the polar axis or the line θ = pi/2 Justify your answer algebraically.Part C: What are the two main differences between the graphs of r1 = 7 + 4cos θ and r2 = 4 + 4cos θ?arrow_forward
- A curve, described by x2 + y2 + 8x = 0, has a point A at (−4, 4) on the curve.Part A: What are the polar coordinates of A? Give an exact answer.Part B: What is the polar form of the equation? What type of polar curve is this?Part C: What is the directed distance when Ø = 5pi/6 Give an exact answer.arrow_forwardNew folder 10. Find the area enclosed by the loop of the curve (1- t², t-t³)arrow_forwardSolve questions by Course Name Ordinary Differential Equationsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY