Concept explainers
(a)
Interpretation:
The complex ion, the counter ions, the electronic configuration of the
Concept introduction:
The electrons in the d orbital of a transition metal split into high and low energy orbitals when ligands are attached to it. The energy difference between these two levels depends upon the properties of both metal and the ligands. If the ligand is strong, then splitting will be high and the complex will be low spin. If the ligand is weak, then splitting will be less and the complex will be high spin.
To determine: The complex ion, the counter ions, the electronic configuration of the transition metal and geometry of complex ion for the given coordination compound.
(a)
Answer to Problem 74AE
The complex ion present is
Explanation of Solution
The given compound is
The coordination compound is
The bracket indicates the composition of complex ion; hence, the complex ion present is
The counter ions are
The oxidation state of cobalt is assumed to be
The number of water ligands is
Substitute the values of number of cobalt atoms, water ligands and charge on them in the above equation,
Therefore, oxidation state of cobalt is
Electronic configuration of
The
Therefore, the geometry of the complex ion is octahedral.
(b)
Interpretation:
The complex ion, the counter ions, the electronic configuration of the transition metal and geometry of complex ion for each of the given coordination compounds is to be stated.
Concept introduction:
The electrons in the d orbital of a transition metal split into high and low energy orbitals when ligands are attached to it. The energy difference between these two levels depends upon the properties of both metal and the ligands. If the ligand is strong, then splitting will be high and the complex will be low spin. If the ligand is weak, then splitting will be less and the complex will be high spin.
To determine: The complex ion, the counter ions, the electronic configuration of the transition metal and geometry of complex ion for the given coordination compound.
(b)
Answer to Problem 74AE
The complex ion present is
Explanation of Solution
The dissociation reaction of
The bracket indicates the composition of complex ion hence the complex ion present is
The counter ions are
The oxidation state of silver is assumed to be
The number of
The number of silver atom is
Substitute the values of number of silver atoms,
Therefore, oxidation state of silver is
Electronic configuration of
Therefore, the geometry of the complex ion is tetrahedral.
(c)
Interpretation:
The complex ion, the counter ions, the electronic configuration of the transition metal and geometry of complex ion for each of the given coordination compounds is to be stated.
Concept introduction:
The electrons in the d orbital of a transition metal split into high and low energy orbitals when ligands are attached to it. The energy difference between these two levels depends upon the properties of both metal and the ligands. If the ligand is strong, then splitting will be high and the complex will be low spin. If the ligand is weak, then splitting will be less and the complex will be high spin.
To determine: The complex ion, the counter ions, the electronic configuration of the transition metal and geometry of complex ion for the given coordination compound.
(c)
Answer to Problem 74AE
The complex ion present is
Explanation of Solution
The dissociation reaction of
The bracket indicates the composition of complex ion hence the complex ion present is
The counter ion is
The oxidation state of copper is assumed to be
The number of
The number of
Substitute the values of number of
Therefore, oxidation state of
Electronic configuration of
Therefore, the geometry of the complex is tetrahedral.
Want to see more full solutions like this?
Chapter 21 Solutions
Chemistry
- Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor.arrow_forward: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO₂ NO3arrow_forward1d. Use Le Chatelier's principle to describe the effect of the following changes on the position of the Haber-Bosch equilibrium: N2(g) + 3H2(g)= 2NH3(9) AH = -92kJ Choose one of the following answers: shift to reactant side, shift to product side or no change and draw the resulting graph. I. Increase the [N2(g)] Effect: H₂ N₂ NH3 II. Decrease the volume of the container. Effect: H₂ N₂2 NH3arrow_forward
- f) The unusual molecule [2.2.2] propellane is pictured. 1) Given the bond length and bond angles in the image, what hybridization scheme best describes the carbons marked by the askerisks? 2) What types of orbitals are used in the bond between the two carbons marked by the askerisks? 3) How does this bond compare to an ordinary carbon-carbon bond (which is usually 1.54 Å long)? CH2 1.60Å H₂C * H₂C CH2 C H2C * C Of H₂ 120°arrow_forwarde) Determine the hybridization and geometry around the indicated carbon atoms. H3C CH3 B HC CH2 A C C C CH3arrow_forwardDon't used Ai solution and hand raitingarrow_forward
- Don't used Ai solutionarrow_forwardDon't used Ai solution and hand raitingarrow_forward75.0 grams of an unknown metal was heated to 95.0°C, it was then placed into 150.0 grams of water at23.1°C, when the metal and water reached thermal equilibrium, the temperature was 27.8°C. Calculatethe specific heat of the metal. (Assume that the specific heat of water is 4.18 J/g °C)arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning