When clothes are removed from a dryer, a 40-g sock is stuck to a sweater, even with the sock clinging to the sweater’s underside. Estimate the minimum attractive force between the sock and the sweater. Then estimate the minimum charge on the sock and the sweater. Assume the charging came entirely from the sock rubbing against the sweater so that they have equal and opposite charges, and approximate the sweater as a flat sheet of uniform charge.
When clothes are removed from a dryer, a 40-g sock is stuck to a sweater, even with the sock clinging to the sweater’s underside. Estimate the minimum attractive force between the sock and the sweater. Then estimate the minimum charge on the sock and the sweater. Assume the charging came entirely from the sock rubbing against the sweater so that they have equal and opposite charges, and approximate the sweater as a flat sheet of uniform charge.
When clothes are removed from a dryer, a 40-g sock is stuck to a sweater, even with the sock clinging to the sweater’s underside. Estimate the minimum attractive force between the sock and the sweater. Then estimate the minimum charge on the sock and the sweater. Assume the charging came entirely from the sock rubbing against the sweater so that they have equal and opposite charges, and approximate the sweater as a flat sheet of uniform charge.
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY