EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 50Q
To determine
Information about collapsar and also explain the existence of long gamma rays accounted with the help of collapsar model.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Andromeda Galaxy, M31, is the closest large spiral galaxy to our Milky Way. When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 655 nm.-Calculate z, being careful with the sign.-How fast is it moving in km/s?-Is it redshifted or blueshifted? Is it moving towards or away from us?
answer to three significant figures.
Imagine that you are observing the light from a distant star that is located in a galaxy 100 million lightyears
away from you. By analysis of the starlight received, you are able to tell that the image we see is of a 10-
million-year-old star. You are also able to predict that the star will have a total lifetime of 50 million years, at
which point it will end in a catastrophic supernova.
a) How old does the star appear to be to us here on Earth now?
b) How long will it be before we receive the light from the supernova event?
c) Has the supernova already occurred? If so, when did it occur?
Astronomers can determine the heat of various areas of the universe by making observations about energy they emit. Gamma rays can be found in areas where there is a lot of star formation occurring.
What would you guess about the temperature of these areas? Explain why.Do you think there would be a lot of particles present? Explain why.
Chapter 21 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 21 - Prob. 1CCCh. 21 - Prob. 2CCCh. 21 - Prob. 3CCCh. 21 - Prob. 4CCCh. 21 - Prob. 5CCCh. 21 - Prob. 6CCCh. 21 - Prob. 7CCCh. 21 - Prob. 8CCCh. 21 - Prob. 9CCCh. 21 - Prob. 10CC
Ch. 21 - Prob. 11CCCh. 21 - Prob. 12CCCh. 21 - Prob. 13CCCh. 21 - Prob. 14CCCh. 21 - Prob. 15CCCh. 21 - Prob. 16CCCh. 21 - Prob. 17CCCh. 21 - Prob. 18CCCh. 21 - Prob. 19CCCh. 21 - Prob. 20CCCh. 21 - Prob. 21CCCh. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10QCh. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75QCh. 21 - Prob. 85QCh. 21 - Prob. 86Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How did astronomers finally solve the mystery of what gamma-ray bursts were? What instruments were required to find the solution?arrow_forward1.2 1.0 0.8 0.6 Cosmic background data from COBE 0.4 0.2 0.0 0.5 10 Wavelength A in mm c) Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the current temperature of the CMB. Based on your estimate, what would the temperature of the CMB have been at a redshift of z = 5000? The left hand diagram above shows the results from observations of the Cosmic Microwave Radiated Intensity per Unit Wavelength (16° Watts/m per mm)arrow_forwardCosmic Microwave Background 8. The Cosmic Microwave Background (CMB) acts as a perfect black body whose energy spectrum(energy density per unit volume per unit frequency) is given by the expression : (image attached)arrow_forward
- Calculate your body’s volume.Next, assume that the nuclei are densely packed. Atomic distances are replaced by the radii of the nuclei. What would your body’s volume be like?How tall would you be? Could you become a black hole?arrow_forwardWhat characteristics must a binary star have to be a good candidate for a blackhole? Why is each of these characteristics important?arrow_forwardWhat makes a neutrino different than a photon? Why is it that astronomers of the mid-20th century only seemed to detect approximately 1/3 of the neutrinos from the Sun that they had expected to?arrow_forward
- What is Stefan-Boltzmann constant? What is its value?arrow_forwardLarge redshifts move the positions of spectral lines to longer wavelengths and change what can be observed from the ground. For example, suppose a quasar has a redshift of =4.1 . At what wavelength would you make observations in order to detect its Lyman line of hydrogen, which has a laboratory or rest wavelength of 121.6 nm? Would this line be observable with a ground-based telescope in a quasar with zero redshift? Would it be observable from the ground in a quasar with a redshift of =4.1 ?arrow_forward(a) Calculate The approximate age of the universe from the average value of the Hubble constant, To do this, calculate the time it would take to travel 1 Mly at a constant expansion rate of 20 km/s. (b) If deceleration is taken into account, would the actual age of the universe be greater or less than that found here? Explain.arrow_forward
- Two students in a science club argue with each other regarding the concept of Redshift. The statements made by the students are given as follows: Student 1: When the absorption maxima shift towards longer wavelengths then it is called the Redshift. Student 2: The decrease in wavelength due to the Doppler effect is known as the Redshift. Which of the above statement/s is/are correct? (a) Both student 1 and student 2 are true. (b) Only student 1 is true. (c) Only student 2 is true. (d) Both student 1 and student 2 are false.arrow_forwardcan i have help with this physics question stefan’s boltzmann Lawarrow_forwardAssuming stars to behave as black bodies stefan-boltzmann law to show that the luminosity of a star is related to its surface temperature and size in the following way: L = 4(3.14)R^2oT^4 where o= 5.67 ×10^-8 Wm^-2 K-4 is the stefan- boltzmann constant. Then use this expression together with the knowledge that the sun has a surface temperature of 5700k and radius 695 500km to calculate the luminosity of the Sun in units of Wattsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning