EBK LOOSE-LEAF VERSION OF UNIVERSE
11th Edition
ISBN: 9781319227975
Author: KAUFMANN
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 21CC
To determine
Whether the black hole is created recently or was produced billions of years ago in the big bang, given that a 1 kg black hole has been detected.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why haven't we detected any Primordial black holes?
Why primordial black holes are thought to be extinct?
1.2
1.0
0.8
0.6
Cosmic background
data from COBE
0.4
0.2
0.0
0.5
10
Wavelength A in mm
c)
Background (CMB) undertaken by the COBE satellite. Use this diagram to estimate the
current temperature of the CMB. Based on your estimate, what would the temperature of
the CMB have been at a redshift of z = 5000?
The left hand diagram above shows the results from observations of the Cosmic Microwave
Radiated Intensity per Unit Wavelength
(16° Watts/m per mm)
Chapter 21 Solutions
EBK LOOSE-LEAF VERSION OF UNIVERSE
Ch. 21 - Prob. 1CCCh. 21 - Prob. 2CCCh. 21 - Prob. 3CCCh. 21 - Prob. 4CCCh. 21 - Prob. 5CCCh. 21 - Prob. 6CCCh. 21 - Prob. 7CCCh. 21 - Prob. 8CCCh. 21 - Prob. 9CCCh. 21 - Prob. 10CC
Ch. 21 - Prob. 11CCCh. 21 - Prob. 12CCCh. 21 - Prob. 13CCCh. 21 - Prob. 14CCCh. 21 - Prob. 15CCCh. 21 - Prob. 16CCCh. 21 - Prob. 17CCCh. 21 - Prob. 18CCCh. 21 - Prob. 19CCCh. 21 - Prob. 20CCCh. 21 - Prob. 21CCCh. 21 - Prob. 1QCh. 21 - Prob. 2QCh. 21 - Prob. 3QCh. 21 - Prob. 4QCh. 21 - Prob. 5QCh. 21 - Prob. 6QCh. 21 - Prob. 7QCh. 21 - Prob. 8QCh. 21 - Prob. 9QCh. 21 - Prob. 10QCh. 21 - Prob. 11QCh. 21 - Prob. 12QCh. 21 - Prob. 13QCh. 21 - Prob. 14QCh. 21 - Prob. 15QCh. 21 - Prob. 16QCh. 21 - Prob. 17QCh. 21 - Prob. 18QCh. 21 - Prob. 19QCh. 21 - Prob. 20QCh. 21 - Prob. 21QCh. 21 - Prob. 22QCh. 21 - Prob. 23QCh. 21 - Prob. 24QCh. 21 - Prob. 25QCh. 21 - Prob. 26QCh. 21 - Prob. 27QCh. 21 - Prob. 28QCh. 21 - Prob. 29QCh. 21 - Prob. 30QCh. 21 - Prob. 31QCh. 21 - Prob. 32QCh. 21 - Prob. 33QCh. 21 - Prob. 34QCh. 21 - Prob. 35QCh. 21 - Prob. 36QCh. 21 - Prob. 37QCh. 21 - Prob. 38QCh. 21 - Prob. 39QCh. 21 - Prob. 40QCh. 21 - Prob. 41QCh. 21 - Prob. 42QCh. 21 - Prob. 43QCh. 21 - Prob. 44QCh. 21 - Prob. 45QCh. 21 - Prob. 46QCh. 21 - Prob. 47QCh. 21 - Prob. 48QCh. 21 - Prob. 49QCh. 21 - Prob. 50QCh. 21 - Prob. 51QCh. 21 - Prob. 52QCh. 21 - Prob. 53QCh. 21 - Prob. 54QCh. 21 - Prob. 55QCh. 21 - Prob. 56QCh. 21 - Prob. 57QCh. 21 - Prob. 58QCh. 21 - Prob. 59QCh. 21 - Prob. 60QCh. 21 - Prob. 61QCh. 21 - Prob. 62QCh. 21 - Prob. 63QCh. 21 - Prob. 64QCh. 21 - Prob. 65QCh. 21 - Prob. 66QCh. 21 - Prob. 67QCh. 21 - Prob. 68QCh. 21 - Prob. 69QCh. 21 - Prob. 70QCh. 21 - Prob. 71QCh. 21 - Prob. 72QCh. 21 - Prob. 73QCh. 21 - Prob. 74QCh. 21 - Prob. 75QCh. 21 - Prob. 85QCh. 21 - Prob. 86Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which is likely to be more common in our Galaxy: white dwarfs or black holes? Why?arrow_forwardA stellar black hole may form when a massive star dies. The mass of the star collapses down to a single point. Imagine an astronaut orbiting a black hole having eight times the mass of the Sun. Assume the orbit is circular. a. Find the speed of the astronaut if his orbital radius is r = 1 AU. b. Find his speed if his orbital radius is r = 11.8 km. c. CHECK and THINK: Compare your answers to the speed of light in a vacuum. What would the astronauts orbital speed be if his orbital radius were smaller than 11.8 km?arrow_forwardHow can a black hole be massive but not big?arrow_forward
- You discover by dropping particles into it that the Event Horizon (Schwartzschild Radius) of a black hole is 171 km. How massive is it? (enter just the number in solar masses)arrow_forwardWhat is the orbital period of a bit of matter in an accretion disk that is located 8 x 10^5 km from a 82 M black hole? (Hint: Use the circular orbit velocity formula, V c = GM/R)arrow_forwardSuppose black holes radiate their mass away and the lifetime of a black hole created by a supernova is about 1067 years. How does this lifetime compare with the accepted age of the universe? Is it surprising that we do not observe the predicted characteristic radiation?arrow_forward
- Black holes radiate emission through Hawking radiation: (a) Calculate the luminosity (in W) of a 100 solar mass black hole? (b) Calculate the fractional differences in temperature and luminosity between a 100 and 10 solar mass black hole? (c) Calculate the mass of a black hole which has peak radiation at optical wavelength (500 nm)?arrow_forwardThe cosmic microwave background consists of: huge clouds of dark matter interspersed with equally huge clouds of H and He enormous cold voids separating warmer filaments of young protostas and protogalaxies denser areas of slightly warmer Hydrogen mixed with slightly less dense areas of slightly cooler Helium an enormous number of photons, particles of light that emerged after the Big Bang atoms of H and He, dark matter, and an immense amount of energy MacBook Air DII DD 30 D00 000 F7 F8 F9 F4 F5 F6 & 4 8 R Yarrow_forwardAs a mass m of gas falls into a black hole, at most 0.1mc2 is likely to emerge as radiation; the rest is swallowed by the black hole. Show the Eddington luminosity for a black hole of mass M is equivalent to 2*10-9 Mc2yr-1. Explain why we expect the black hole's mass to grow by at least a factor of e every 5*107 years. Where Edding Luminicity is defined as LE=(4piGMmpc)/(sigmaT), where G is the gravitational constant, M is the mass of the black hole, mp is the mass of a proton, c is the speed of light, and sigmaT is Thomson scattering where sigmaT=6.653*10-25 cm2.arrow_forward
- According to General Relativity theory, if a space probe was to pass very close to a massive Black Hole, what would happen to time ticking inside the space probe?arrow_forwardIf the book's example of the Schwarzchild radius of the supermassive black hole Sag A* with a mass of ~4 million (aka 4*10^6) solar masses is approximately 1.2*10^10 m (or rewritten as 12*10^9 m), what would be the Schwarzchild radius of something with the mass of Jupiter (~0.001 or 10^(-3) solar masses) be? How does this compare to the size of an average person (~1.5 m)?arrow_forwardWhich of the following statements about black holes are true? (select all that apply) If you watch someone else fall into a black hole, you will never see him or her cross the event horizon. However, he or she will fade from view as the light he or she emits (or reflects) becomes more and more redshifted. If you fell into a black hole, you would experience time to be running normally as you plunged rapidly across the event horizon. If we watch a clock fall toward a black hole you will see it tick slower and slower as it falls nearer to the event horizon. If the Sun magically disappeared and was replaced by a black hole of the same mass, Earth would soon be sucked into the black hole.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY