Introduction to mathematical programming
Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
Expert Solution & Answer
Book Icon
Chapter 2.1, Problem 4P

Explanation of Solution

Proving (AB)T=BTAT:

Consider a matrix A of order m×n and another matrix B of order n×k, then the product AB is defined because the columns in A are equal to the rows in B.

Thus, the matrix AB will be of the order m×k.

The matrix A has elements ali and the matrix B has elements bij.

Then, the element of D=AB will be of the form given below:

dlj=i=1nalibij......(1)

Transpose of this matrix is (AB)T. The matrix is of the order k×m.

And the element of the matrix DT=(AB)T is of the form djl.

Now the transpose of the matrix B is BT and it will be of the order k×n.

The element in BT is of the form bji

Blurred answer
Students have asked these similar questions
I need help to solve the following case, thank you
hi I would like to get help to resolve the following case
Could you help me to know  features of the following concepts: - defragmenting. - dynamic disk. - hardware RAID
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr