Introduction to mathematical programming
4th Edition
ISBN: 9780534359645
Author: Jeffrey B. Goldberg
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer
Chapter 2.5, Problem 4P
Explanation of Solution
Inverse of the given matrix:
Consider the given matrix,
Suppose that the inverse of the given matrix is as follows:
Applying Gauss Jordan method,
Replacing row 2 by (row 2 – row 1), the following matrix is obtained,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The meet of two zero-one matrices A and B is described as
AAB = [ajj A bj]
AvB = [aj A bijl]
A v B = [aj v bijl
A AB = [aj v bijl]
Do
6
Chapter 2 Solutions
Introduction to mathematical programming
Ch. 2.1 - Prob. 1PCh. 2.1 - Prob. 2PCh. 2.1 - Prob. 3PCh. 2.1 - Prob. 4PCh. 2.1 - Prob. 5PCh. 2.1 - Prob. 6PCh. 2.1 - Prob. 7PCh. 2.2 - Prob. 1PCh. 2.3 - Prob. 1PCh. 2.3 - Prob. 2P
Ch. 2.3 - Prob. 3PCh. 2.3 - Prob. 4PCh. 2.3 - Prob. 5PCh. 2.3 - Prob. 6PCh. 2.3 - Prob. 7PCh. 2.3 - Prob. 8PCh. 2.3 - Prob. 9PCh. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.5 - Prob. 1PCh. 2.5 - Prob. 2PCh. 2.5 - Prob. 3PCh. 2.5 - Prob. 4PCh. 2.5 - Prob. 5PCh. 2.5 - Prob. 6PCh. 2.5 - Prob. 7PCh. 2.5 - Prob. 8PCh. 2.5 - Prob. 9PCh. 2.5 - Prob. 10PCh. 2.5 - Prob. 11PCh. 2.6 - Prob. 1PCh. 2.6 - Prob. 2PCh. 2.6 - Prob. 3PCh. 2.6 - Prob. 4PCh. 2 - Prob. 1RPCh. 2 - Prob. 2RPCh. 2 - Prob. 3RPCh. 2 - Prob. 4RPCh. 2 - Prob. 5RPCh. 2 - Prob. 6RPCh. 2 - Prob. 7RPCh. 2 - Prob. 8RPCh. 2 - Prob. 9RPCh. 2 - Prob. 10RPCh. 2 - Prob. 11RPCh. 2 - Prob. 12RPCh. 2 - Prob. 13RPCh. 2 - Prob. 14RPCh. 2 - Prob. 15RPCh. 2 - Prob. 16RPCh. 2 - Prob. 17RPCh. 2 - Prob. 18RPCh. 2 - Prob. 19RPCh. 2 - Prob. 20RPCh. 2 - Prob. 21RPCh. 2 - Prob. 22RP
Knowledge Booster
Similar questions
- H.W:- Find the transpose to the following matrices 2 34 8 13 87 60 7 97 13 -19 34 2 -9 l11 06 - -1 -2arrow_forwardDetermined the eigenvector of the matrix: please print A=[1 0 4, 0 4 0, 3 5 -3]arrow_forwardH.W:- Find the determinant for the following matrices: [0.1 0.1 -4.31 6. E=7,5 6.2 0.7 answer: E = -11.217 L0.3 0.6 -1.2arrow_forward
- Please solve quicklyarrow_forwardQ3: Find the eigenvalues of the Matrix: C = 3 21 1 ادة / صباحي : انور عدنان یحییarrow_forwardSolving Equations Using Matrix Perform the following Matrix Operations for the predefined matrices. Given the System of equations: 2х + 4у—5z + Зw %3D — 33 Зх + 5у-2г + бw %3D —37 x- 2y + 4z – 2w = 25 Зх + 5у—3г + Зw %3D - 28 Write the systems as Ax = b, where A is the coefficient matrix and b is the vector for the constants. 1. Encode the Matrix A and the column vector b. 2. Solve for Determinant of A. 3. Find the Inverse of A. 4. Find the Eigenvalues of A. 5. Form the Reduced Row Echelon of A. 6. Find the number of rows and number of columns of Ab. 7. Find the sum of the columns of A. 8. In each of the columns of A, find the highest values and its indices. 9. Augment A with b; 10. Determine the Rank of Ab 11. Find blA 12. Form the Reduced Row Echelon of Ab. 13. Extract the Last Column of the Reduced Row Echelon Form of Ab. 14. Create a matrixA whose elements are the same as matrix A, but the first column is the column vector b. 15. Create a matrix A whose elements are the same as…arrow_forward
- Asaparrow_forwardObtain the 2 x 2 matrix that represents each of the given products and identify what symmetry of the unit circle the product represents. 1. O()O(2) (Hint: You don't need to write out the entries of the two matrices in the product.) 2. M(0)O(2)arrow_forward) Assume A is k × n-matrix and Q is n x n-invertible matrix. Prove that rank(AQ) = rank(A).arrow_forward
- By using (for) write a to find the mulitplication of two matrices? Computer programmingarrow_forwardConsider the following. -4 2 0 1 -3 A = 0 4 2 2 1 2 2 (a) Verify that A is diagonalizable by computing P AP. P-lAP = E (b) Use the result of part (a) and the theorem below to find the eigenvalues of A. Similar Matrices Have the Same Eigenvalues If A and B are similar n xn matrices, then they have the same eigenvalues. VAarrow_forwardManula solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Operations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks Cole
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole