
Concept explainers
Interpretation:
Effect of hydrophobic interactions on the tertiary structure of proteins must be explained.
Concept introduction:
Proteins are biological
Amino acids are molecules that contain both amino group and
Structure of proteins plays a very important role in their function. Proteins are very complex in structure. Structure of protein is studied in four levels: Primary, Secondary, Tertiary and Quaternary structure.
Primary structure:
Primary structure of a protein is the sequence of amino acids in each polypeptide chain that make up the protein. The ultimate structure of protein depends on this sequence.
Secondary Structure:
The peptide backbone of polypeptide chain folds onto itself due to interactions between amino and carboxylic acid residues in the peptide backbone. This folding of polypeptide chains give proteins a unique shape, this makes the secondary structure of proteins.
Two kinds of shapes are formed in the secondary structure of proteins:
- α-Helix: The backbone folds itself to form a helical structure. Hydrogen bonds are formed with the chain.
- ß-Pleated sheet: The polypeptide chains are stacked side by side. The outer N-H and C=O form intermolecular hydrogen bonds and give a very rigid structure. These hydrogen bonds are formed between neighboring polypeptide chains unlike α-Helix.
Tertiary Structure:
The overall 3-Dimensional structure of a protein formed when regions in secondary structure fold together, is called the tertiary structure of a protein. The tertiary structure of a protein is primarily due to interactions between the side chains of the polypeptide chains or the side chains in the backbone of the polypeptide.
The interactions between the side chains include: hydrogen bonding, ionic interactions, dipole-dipole interactions and London dispersion forces. Another important interaction that makes up the tertiary structure of proteins are hydrophobic interactions between the hydrophobic r groups of side chain of amino acids.
One special kind of covalent bond is also involved in forming the tertiary structure of proteins that is the disulfide bond formed between the -SH residues of cysteine.
Quaternary Structure:
When proteins contain more than one polypeptide chain, the final arrangement of each polypeptide subunit is known as the quaternary structure. The same kinds of interactions that make the tertiary structure are also involved in forming the quaternary structure.

Trending nowThis is a popular solution!

Chapter 21 Solutions
Introduction To General, Organic, And Biochemistry
- Which of the following compounds is the most acidic in the gas phase? Group of answer choices H2O SiH4 HBr H2Sarrow_forwardWhich of the following is the most acidic transition metal cation? Group of answer choices Fe3+ Sc3+ Mn4+ Zn2+arrow_forwardBased on the thermodynamics of acetic acid dissociation discussed in Lecture 2-5, what can you conclude about the standard enthalpy change (ΔHo) of acid dissociation for HCl? Group of answer choices You cannot arrive at any of the other three conclusions It is a positive value It is more negative than −0.4 kJ/mol It equals −0.4 kJ/molarrow_forward
- Add conditions above and below the arrow that turn the reactant below into the product below in a single transformation. + More... If you need to write reagents above and below the arrow that have complex hydrocarbon groups in them, there is a set of standard abbreviations you can use. More... T H,N NC Datarrow_forwardIndicate the order of basicity of primary, secondary and tertiary amines.arrow_forward> Classify each of the following molecules as aromatic, antiaromatic, or nonaromatic. Cl Z- N O aromatic O antiaromatic O nonaromatic O aromatic O antiaromatic O nonaromatic O aromatic ○ antiaromatic nonaromaticarrow_forward
- Please help me answer this question. I don't understand how or even if this can happen in a single transformation. Please provide a detailed explanation and a drawing showing how it can happen in a single transformation. Add the necessary reagents and reaction conditions above and below the arrow in this organic reaction. If the products can't be made from the reactant with a single transformation, check the box under the drawing area instead.arrow_forward2) Draw the correct chemical structure (using line-angle drawings / "line structures") from their given IUPAC name: a. (E)-1-chloro-3,4,5-trimethylhex-2-ene b. (Z)-4,5,7-trimethyloct-4-en-2-ol C. (2E,6Z)-4-methylocta-2,6-dienearrow_forwardපිපිම Draw curved arrows to represent the flow of electrons in the reaction on the left Label the reactants on the left as either "Acid" or "Base" (iii) Decide which direction the equilibrium arrows will point in each reaction, based on the given pk, values (a) + H-O H 3-H + (c) H" H + H****H 000 44-00 NH₂ (e) i Дон OH Ө NHarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning





