College Physics: Explore And Apply, Volume 2 (2nd Edition)
2nd Edition
ISBN: 9780134862910
Author: Eugenia Etkina, Gorazd Planinsic, Alan Van Heuvelen, Gorzad Planinsic
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 47P
(a)
To determine
The capacitance of capacitor, if a parallel plate capacitor is made by placing a
(b)
To determine
The frequency of alternating current at which capacitive reactance of a capacitor is equal to
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3.19 • Win the Prize. In a carnival booth, you can win a stuffed gi-
raffe if you toss a quarter into a small dish. The dish is on a shelf above
the point where the quarter leaves your hand and is a horizontal dis-
tance of 2.1 m from this point (Fig. E3.19). If you toss the coin with
a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin
will land in the dish. Ignore air resistance. (a) What is the height of the
shelf above the point where the quarter leaves your hand? (b) What is
the vertical component of the velocity of the quarter just before it lands
in the dish?
Figure E3.19
6.4 m/s
2.1
Can someone help me answer this thank you.
1.21 A postal employee drives a delivery truck along the route
shown in Fig. E1.21. Determine the magnitude and direction of the
resultant displacement by drawing a scale diagram. (See also Exercise
1.28 for a different approach.)
Figure E1.21
START
2.6 km
4.0 km
3.1 km
STOP
Chapter 21 Solutions
College Physics: Explore And Apply, Volume 2 (2nd Edition)
Ch. 21 - Review Question 21.1 Your friend thinks that...Ch. 21 - Review Question 21.2 You have a bar magnet and a...Ch. 21 - Review Question 21.3 What difficulty would occur...Ch. 21 - Review Question 21.4 Why do we write the law of...Ch. 21 - Review Question 21.5 How does the law of...Ch. 21 - Review Question 21.6 A capacitor in an electric...Ch. 21 - Prob. 7RQCh. 21 - Review Question 21.8 Explain how (a) an electric...Ch. 21 - 1. In which of the experiments with a loop and a...Ch. 21 - If you move the coil in Figure Q21.2 toward the N...
Ch. 21 - The magnetic flux through a 100-cm2 loop is...Ch. 21 - Your friend says that the emf induced in a coil...Ch. 21 - 5. A metal ring lies on a table. The S pole of a...Ch. 21 - 6. One coil is placed on lop of another The bottom...Ch. 21 - Two coils are placed next to each other flat on...Ch. 21 - 8. Two identical bar magnets are dropped...Ch. 21 - A windows metal frame is essentially a metal loop...Ch. 21 - Four identical loops move at the same velocity...Ch. 21 - A 12-V automobile battery provides the thousands...Ch. 21 - A respiration detector consists of a coil placed...Ch. 21 - A parallel plate capacitor and a lightbulb are...Ch. 21 - Prob. 14MCQCh. 21 - A bar magnet falling with the north pole facing...Ch. 21 - 16. An induction cooktop has a smooth surface When...Ch. 21 - Describe three common applications of...Ch. 21 - 18. Two rectangular loops A and B are near each...Ch. 21 - A simple metal detector has a coil with an...Ch. 21 - 20. Construct flux-versus-time and emf-versus-time...Ch. 21 - How is it possible to get a 2000-V emf from a...Ch. 21 - You connect a capacitor and a lightbulb in series...Ch. 21 - Prob. 23CQCh. 21 - * You and your friend are performing experiments...Ch. 21 - You decide to use a metal ring as an indicator of...Ch. 21 - * To check whether a lightbulb permanently...Ch. 21 - * Flashlight without batteries A flashlight that...Ch. 21 - You need to invent a practical application for a...Ch. 21 - * Detect burglars entering windows. Describe how...Ch. 21 - 7. * A coil connected to an ammeter can detect...Ch. 21 - * The B field in a region has a magnitude of 0.40...Ch. 21 - 9. EST How do you position a bicycle tire so that...Ch. 21 - * EST Estimate the magnetic flux through your head...Ch. 21 - 11. * Estimate the magnetic flux through the...Ch. 21 - Prob. 12PCh. 21 - 13. You have the apparatus shown in Figure P21.13....Ch. 21 - * You suggest that eddy currents can stop the...Ch. 21 - * Your friend thinks that an induced magnetic...Ch. 21 - The magnetic flux through three different coils is...Ch. 21 - 17. The magnetic flux through three different...Ch. 21 - 18. A magnetic field passing through two coils of...Ch. 21 - BIO Stimulating the brain in transcranial magnetic...Ch. 21 - * To measure a magnetic field produced by an...Ch. 21 - Prob. 21PCh. 21 - 22 * BIO Breathing monitor An apnea monitor for...Ch. 21 - 23. * A bar magnet induces a current in an -turn...Ch. 21 - * An experimental apparatus has two parallel...Ch. 21 - A Boeing 747 with a 65-m wingspan is cruising...Ch. 21 - Prob. 27PCh. 21 - 28. ** BIO EST Magnetic field and brain cells...Ch. 21 - * You need to test Faraday's law You have a...Ch. 21 - 30. * You build a coil of radius r (m) and place...Ch. 21 - * EST Generator for space station Astronauts on a...Ch. 21 - 35. * A toy electric generator has a 20-tum...Ch. 21 - 36. * A generator has a 450-turn coil that is 10...Ch. 21 - 39. * A generator has a 100-turn coil that rotates...Ch. 21 - Prob. 40PCh. 21 - * A rectangular wire loop is moving with constant...Ch. 21 - field that points into the page (Figure P21.42)....Ch. 21 - 43. The voltage across an AC power supply is given...Ch. 21 - 44. * The alternating current through a capacitor...Ch. 21 - * The alternating current through a solenoid is...Ch. 21 - 46. * The rms voltage of household AC in Europe is...Ch. 21 - Prob. 47PCh. 21 - Prob. 48PCh. 21 - 49. You need to build a transformer that can step...Ch. 21 - 50. Your home’s electric doorbell operates on 10...Ch. 21 - 51. A 9.0-V battery and switch are connected in...Ch. 21 - * You are fixing a transformer for a toy truck...Ch. 21 - 53. * A wire loop has a radius of 10 cm. A...Ch. 21 - BIO Hammerhead shark A hammerhead shark (Figure...Ch. 21 - ** You have a 12-V battery, some wire, a switch,...Ch. 21 - 61.* EST A sparker used to ignite lighter fluid in...Ch. 21 - * EST Design a magnetometer Your friend needs to...Ch. 21 - Prob. 63GPCh. 21 - 64 EST MRI Jose needs an MRI (magnetic resonance...Ch. 21 - * Magstripe reader A magstripe reader used to read...Ch. 21 - 66. Show that when a metal rod L meters long moves...Ch. 21 - 67. ** EST The Tower of Terror ride Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- help because i am so lost and it should look something like the picturearrow_forward3.31 A Ferris wheel with radius Figure E3.31 14.0 m is turning about a horizontal axis through its center (Fig. E3.31). The linear speed of a passenger on the rim is constant and equal to 6.00 m/s. What are the magnitude and direction of the passenger's acceleration as she passes through (a) the lowest point in her circular motion and (b) the high- est point in her circular motion? (c) How much time does it take the Ferris wheel to make one revolution?arrow_forward1.56 ⚫. Three horizontal ropes pull on a large stone stuck in the ground, producing the vector forces A, B, and C shown in Fig. P1.56. Find the magnitude and direction of a fourth force on the stone that will make the vector sum of the four forces zero. Figure P1.56 B(80.0 N) 30.0 A (100.0 N) 53.0° C (40.0 N) 30.0°arrow_forward
- 1.39 Given two vectors A = -2.00 +3.00 +4.00 and B=3.00 +1.00 -3.00k. (a) find the magnitude of each vector; (b) use unit vectors to write an expression for the vector difference A - B; and (c) find the magnitude of the vector difference A - B. Is this the same as the magnitude of B - Ä? Explain.arrow_forward5. The radius of a circle is 5.5 cm. (a) What is the circumference in meters? (b) What is its area in square meters? 6. Using the generic triangle below, solve the following: 0 = 55 and c = 32 m, solve for a and b. a = 250 m and b = 180 m, solve for the angle and c. b=104 cm and c = 65 cm, solve for a and the angle b a 7. Consider the figure below representing the Temperature (T in degrees Celsius) as a function of time t (in seconds) 4 12 20 (a) What is the area under the curve in the figure below? (b) The area under the graph can be calculated using integrals or derivatives? (c) During what interval is the derivative of temperature with respect to time equal to zero?arrow_forwardPart 3: Symbolic Algebra Often problems in science and engineering are done with variables only. Don't let the different letters confuse you. Manipulate them algebraically as though they were numbers. 1. Solve 3x-7= x + 3 for x 2x-1 2. Solve- for x 2+2 In questions 3-11 solve for the required symbol/letter 3. v2 +2a(s-80), a = = 4. B= Ho I 2π r 5. K = kz² 6.xm= MAL ,d= d 7.T, 2 = 8.F=Gm 9. mgh=mv² 10.qV = mu² 80 12. Suppose that the height in meters of a thrown ball after t seconds is given by h =6+4t-t². Complete the square to find the highest point and the time when this happens. 13. Solve by completing the square c₁t² + cat + 3 = 0. 14. Solve for the time t in the following expression = 0 + vot+at²arrow_forward
- A blacksmith cools a 1.60 kg chunk of iron, initially at a temperature of 650.0° C, by trickling 30.0°C water over it. All the water boils away, and the iron ends up at a temperature of 120.0° C. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Changes in both temperature and phase. Part A How much water did the blacksmith trickle over the iron? Express your answer with the appropriate units. HÅ mwater = Value 0 ? Units Submit Request Answerarrow_forwardSteel train rails are laid in 13.0-m-long segments placed end to end. The rails are laid on a winter day when their temperature is -6.0° C. Part A How much space must be left between adjacent rails if they are just to touch on a summer day when their temperature is 32.0°C? Express your answer with the appropriate units. ☐ о μΑ ? D = Value Units Submit Previous Answers Request Answer × Incorrect; Try Again; 3 attempts remaining Al Study Tools Looking for some guidance? Let's work through a few related practice questions before you go back to the real thing. This won't impact your score, so stop at anytime and ask for clarification whenever you need it. Ready to give it a try? Start Part B If the rails are originally laid in contact, what is the stress in them on a summer day when their temperature is 32.0°C? Express your answer in pascals. Enter positive value if the stress is tensile and negative value if the stress is compressive. F A Ο ΑΣΦ ? Раarrow_forwardhelp me with this and the step I am so confused. It should look something like the figure i shownarrow_forward
- Part A In an effort to stay awake for an all-night study session, a student makes a cup of coffee by first placing a 200 W electric immersion heater in 0.250 kg of water. How much heat must be added to the water to raise its temperature from 20.5° C to 95.0°C? Express your answer in joules. ΕΠΙ ΑΣΦ Q Submit Request Answer Part B ? J How much time is required? Assume that all of the heater's power goes into heating the water. Express your answer in seconds. VG ΑΣΦ ? t = Sarrow_forwardhelp i dont understand this it should look like something like this picture. help me with the stepsarrow_forwardDraw the velocity vectors starting at the black dots and the acceleration vectors including those equal to zero.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning