A firefighter holds a hose 3 m off the ground and directs a stream of water toward a burning building. The water leaves the hose at an initial speed of 16 m/sec at an angle of 30 o . The height of the water can be approximated by h x = − 0.026 x 2 + 0.577 x + 3 , where h x is the height of the water in meters at a point x meters horizontally from the firefighter to the building. a. Determine the horizontal distance from the firefighter at which the maximum height of the water occurs. Round to 1 decimal place. b. What is the maximum height of the water? Round to 1 decimal place. c. The flow of water hits the house on the downward branch of the parabola at a height of 6 m. Now far is the firefighter front the house? Round to the nearest meter.
A firefighter holds a hose 3 m off the ground and directs a stream of water toward a burning building. The water leaves the hose at an initial speed of 16 m/sec at an angle of 30 o . The height of the water can be approximated by h x = − 0.026 x 2 + 0.577 x + 3 , where h x is the height of the water in meters at a point x meters horizontally from the firefighter to the building. a. Determine the horizontal distance from the firefighter at which the maximum height of the water occurs. Round to 1 decimal place. b. What is the maximum height of the water? Round to 1 decimal place. c. The flow of water hits the house on the downward branch of the parabola at a height of 6 m. Now far is the firefighter front the house? Round to the nearest meter.
A firefighter holds a hose 3 m off the ground and directs a stream of water toward a burning building. The water leaves the hose at an initial speed of 16 m/sec at an angle of
30
o
. The height of the water can be approximated by
h
x
=
−
0.026
x
2
+
0.577
x
+
3
,
where
h
x
is the height of the water in meters at a point x meters horizontally from the firefighter to the building.
a. Determine the horizontal distance from the firefighter at which the maximum height of the water occurs. Round to 1 decimal place.
b. What is the maximum height of the water? Round to 1 decimal place.
c. The flow of water hits the house on the downward branch of the parabola at a height of 6 m. Now far is the firefighter front the house? Round to the nearest meter.
Write the given third order linear equation as an equivalent system of first order equations with initial values.
Use
Y1 = Y, Y2 = y', and y3 = y".
-
-
√ (3t¹ + 3 − t³)y" — y" + (3t² + 3)y' + (3t — 3t¹) y = 1 − 3t²
\y(3) = 1, y′(3) = −2, y″(3) = −3
(8) - (888) -
with initial values
Y
=
If you don't get this in 3 tries, you can get a hint.
Question 2
1 pts
Let A be the value of the triple integral
SSS.
(x³ y² z) dV where D is the region
D
bounded by the planes 3z + 5y = 15, 4z — 5y = 20, x = 0, x = 1, and z = 0.
Then the value of sin(3A) is
-0.003
0.496
-0.408
-0.420
0.384
-0.162
0.367
0.364
Question 1
Let A be the value of the triple integral SSS₂ (x + 22)
=
1 pts
dV where D is the
region in
0, y = 2, y = 2x, z = 0, and
the first octant bounded by the planes x
z = 1 + 2x + y. Then the value of cos(A/4) is
-0.411
0.709
0.067
-0.841
0.578
-0.913
-0.908
-0.120
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY