bartleby

Videos

Question
Book Icon
Chapter 21, Problem 43AP

(a)

To determine

The entropy rise of the entire system.

(a)

Expert Solution
Check Mark

Answer to Problem 43AP

The entropy rise of the entire system is 13.4J/K .

Explanation of Solution

Given info: The mass of the athlete and the water is 70kg and 454g respectively. The initial temperature of athlete and water is 98.6°F and 35°F respectively.

Write the expression to calculate the change in entropy of the system.

ΔS=ΔSicewater+ΔSbody (1)

Here,

ΔSicewater is the change in the entropy of cold water.

ΔSbody is the change in the entropy of body.

ΔS is change in entropy of the system.

Write the expression to calculate the change in entropy of water.

ΔSicewater=msdTT (2)

Here,

m is the mass of water.

s is the specific heat of water.

T is the absolute temperature.

dT is the change in temperature of water.

Write the expression to convert the temperature from Fahrenheit to Kelvin.

K=59(°F32)+273.15 (3)

Substitute 98.6°F for °F in equation (3).

K=59(98.6°F32)+273.15=310.15K

Thus, the temperature of body in Kelvin is 310.15K .

Substitute 35°F for °F in equation (3).

K=59(35°F-32)+273.15=274.82K

Thus, the temperature of water in Kelvin is 274.82K .

Substitute 454g for m , 4.18J/gK for s in equation (1) to find ΔSicewater .

ΔSicewater=454g(4.18J/gK)dTT=1897.72J/KdTT

Integrate the above expression from the limit of 274.67K to 310K .

ΔSicewater=1897.72J/K274.67K310KdTT

Write the expression to calculate the change in entropy of water.

ΔSbody=ms(T2T1)T2

Here,

T2 is the temperature of body.

T1 is the temperature of water.

Substitute msdTT for ΔSbody and 1897.72J/K274.67K310KdTT for ΔSicewater in equation (1).

ΔS=1897.72J/K274.67K310KdTT+ms(T2T1)T2                               (4)

Substitute 454g for m , 4.18J/gK for s , 310K for T2 and 274.67K for T1 in equation (4) to find ΔS .

ΔS=1897.72J/K274.67K310KdTT454g×4.18J/gK(310K274.67K)310K=1897.72J/K×ln(310K274.67K)216.27J/K=13.4J/K

Thus, the entropy rise of the entire system is 13.4J/K .

Conclusion:

Therefore, the entropy rise of the entire system is 13.4J/K .

(b)

To determine

The athlete’s temperature after she drinks the cold water.

(b)

Expert Solution
Check Mark

Answer to Problem 43AP

The final temperature of the body is 310K .

Explanation of Solution

Given info: The mass of the athlete and the water is 70kg and 454g respectively. The initial temperature of athlete and water is 98.6°F and 35°F respectively.

Write the expression of heat balance equation.

Heatgainedbywater=Heatlostbybodyms(Tf274.82K)=Ms(310.15KTf)m(Tf274.82K)=M(310.15KTf) (5)

Here,

Tf is the final temperature of the body.

Substitute 454g for m and 70kg for M in equation (5).

454g(Tf274.82K)=70kg×1000g1kg(310.15K-Tf)Tf=309.92K310K

Conclusion:

Therefore, the final temperature of the body is 310K .

(c)

To determine

The entropy rise of the entire system.

(c)

Expert Solution
Check Mark

Answer to Problem 43AP

The entropy rise of the entire system is 13.3J/K .

Explanation of Solution

Given info: The mass of the athlete and the water is 70kg and 454g respectively. The initial temperature of athlete and water is 98.6°F and 35°F respectively.

Write the expression to calculate the change in entropy of the system.

ΔS=ΔSicewater+ΔSbody (1)

Write the expression to calculate the change in entropy of water.

ΔSicewater=msdTT (2)

Integrate the above expression from the limit of 274.67K to 309.78K .

ΔSicewater=ms274.82K309.92KdTT

Substitute 454g for m , (1cal/gK) for s in above equation.

ΔSicewater=454g(1cal/gK)274.82K309.92KdTT=54.6cal/K55cal/K

Write the expression to calculate the change in entropy of body.

ΔSbody=MsdTT (7)

Here,

M is the mass of athlete.

Integrate the above expression from the limit of 309.92K to 310.15K .

ΔSbody=Ms310.15K309.92KdTT

Substitute 70kg for M and (1cal/gK) for s in above equation.

ΔSbody=70kg×1000g1kg(1cal/gK)310.15K309.92KdTT=51.8cal/K

Substitute 55cal/K for ΔSicewater and 51.8cal/K for ΔSbody in equation (1) to find ΔS .

` ΔS=55cal/K51.8cal/K=3.2cal/K=3.2cal/K×4.18J1cal13.3J/K (8)

Thus, the entropy rise of the entire system is 13.3J/K .

Conclusion:

Therefore, the entropy rise of the entire system is 13.3J/K .

(d)

To determine

The result by comparing the part (a) and (c).

(d)

Expert Solution
Check Mark

Answer to Problem 43AP

The change in entropy in part (c) is less than that of part (a) by less than 1%.

Explanation of Solution

Given info: The mass of the athlete and the water is 70kg and 454g respectively. The initial temperature of athlete and water is 98.6°F and 35°F respectively.

The percentage change in entropy is,

%S=13.4J/K13.3J/K13.4J/K×100=0.74%

Thus the change in entropy in part (c) is less than that of part (a) by less than 1%.

Conclusion:

Therefore, the change in entropy in part (c) is less than that of part (a) by less than 1%.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest? m m 0 k wwww
A block of mass m = 2.50 kg situated on an incline at an angle of k=100 N/m www 50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched. Ө m i (a) How far does it move down the frictionless incline before coming to rest? m (b) What is its acceleration at its lowest point? Magnitude m/s² Direction O up the incline down the incline
(a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) m

Chapter 21 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Ch. 21 - A freezer has a coefficient of performance of...Ch. 21 - Prob. 6PCh. 21 - One of the most efficient heat engines ever built...Ch. 21 - Prob. 8PCh. 21 - If a 35.0% -efficient Carnot heat engine (Fig....Ch. 21 - Prob. 10PCh. 21 - Prob. 11PCh. 21 - A power plant operates at a 32.0% efficiency...Ch. 21 - You are working on a summer job at a company that...Ch. 21 - Prob. 14PCh. 21 - Prob. 15PCh. 21 - Suppose you build a two-engine device with the...Ch. 21 - A heat pump used for heating shown in Figure...Ch. 21 - Prob. 18PCh. 21 - An idealized diesel engine operates in a cycle...Ch. 21 - Prob. 20PCh. 21 - Prob. 21PCh. 21 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 21 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 21 - A 2.00-L container has a center partition that...Ch. 21 - Calculate the change in entropy of 250 g of water...Ch. 21 - What change in entropy occurs when a 27.9-g ice...Ch. 21 - Prob. 27PCh. 21 - Prob. 28PCh. 21 - Prob. 29PCh. 21 - Prob. 30APCh. 21 - Prob. 31APCh. 21 - In 1993, the U.S. government instituted a...Ch. 21 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 21 - Prob. 34APCh. 21 - Prob. 35APCh. 21 - Prob. 36APCh. 21 - A 1.00-mol sample of an ideal monatomic gas is...Ch. 21 - Prob. 38APCh. 21 - A heat engine operates between two reservoirs at...Ch. 21 - You are working as an assistant to a physics...Ch. 21 - Prob. 41APCh. 21 - You are working as an expert witness for an...Ch. 21 - Prob. 43APCh. 21 - Prob. 44APCh. 21 - A sample of an ideal gas expands isothermally,...Ch. 21 - Prob. 46APCh. 21 - The compression ratio of an Otto cycle as shown in...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY