BIOCHEMISTRY-ACHIEVE (1 TERM)
BIOCHEMISTRY-ACHIEVE (1 TERM)
9th Edition
ISBN: 9781319402853
Author: BERG
Publisher: MAC HIGHER
Question
Book Icon
Chapter 21, Problem 32P
Interpretation Introduction

Interpretation:

A balance equation that showing the effect of simultaneous activation of glycogen phosphorylase and glycogen synthase including the reaction catalyzed by phosphoglucomutase and UPD-glucose pyrophosphorylase should be written.

Concept introduction:

Enzyme phosphoglucomutase breakdown glycogen into glucose 6-phosphate.

The enzyme phosphoglucomutase converts glucose 6-phosphate into glucose 1-phosphate.

glucose 1-phosphate reacts with UTP (Uridine-5’-triphosphate) to form UDP − glucose.

UDP − glucose act as the substrate of the glycogen synthesis process.

Blurred answer
Students have asked these similar questions
2. For the flow of fluid over a flat membrane of length 10cm, determine the length-average mass transfer coefficient. The relevant properties of the system are u=0.01cm²/s, D=5 x 106 cm²/s, and v = 5.0 cm/s.
Background Freezing isn't the only challenge in cryopreservation - thawing can be just as difficult. A microwave oven seems like a nice solution, since it deposits energy quickly and microwaves are non-ionizing radiation (they do not cause DNA mutation). However, water absorbs microwaves more effectively than ice does, meaning that the portion of an organ that has already melted will get warmer at a higher rate than the remaining ice – the opposite of what we want! - The transmission of radiation through a weakly absorbing material such as ice or water can be modeled by Beer's law, which assumes that the rate of absorption at a depth x is proportional to the local radiation intensity I(x) times an absorption coefficient, which is often written as μ or a or just µ). Noting that absorption decreases the intensity, we can write a differential equation a Solving the differential equation with the boundary condition on the surface being gives the relationship For a standard microwave oven…
3. Dry air is inhaled at a rate of 10 liter/min through a trachea with a diameter of 20 mm and a length of 125 mm. The inner surface of the trachea is at a normal body temperature of 37°C and may be assumed to be saturated with water. a. Assuming steady, fully developed flow in the trachea, estimate the mass transfer convection coefficient. b. Estimate the daily water loss (liter/day) associated with evaporation in the trachea.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
    Text book image
    Principles Of Pharmacology Med Assist
    Biology
    ISBN:9781337512442
    Author:RICE
    Publisher:Cengage
    Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305961135
    Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning
Text book image
Principles Of Pharmacology Med Assist
Biology
ISBN:9781337512442
Author:RICE
Publisher:Cengage
Text book image
Biochemistry
Biochemistry
ISBN:9781305961135
Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougal
Publisher:Cengage Learning