College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 23CQ
To determine
The change in the brightness of a lightbulb, if a person squeezes the solenoid very hard with two large books and flattens it. Given that, the solenoid and the lightbulb are connected in series with a power supply which is AC in nature.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A long, straight current carrying solenoid creates a uniform magnetic field B= 12 mT inside itself when the current is I = 35 A.
a) Calculate the number of turns per unit length, n, where the total number of turns is N1.
Turns per unit length, n
Give your answer to at least three significance digits.
b) Suppose this solenoid is connected to an AC circuit inside a physics laboratory. If the length of the solenoid is l = 62 cm and the diameter is
d = 3 cm, calculate its self inductance L1.
Self inductance, L1
Give your answer to at least three significance digits.
F
Suppose we have a rectangular loop S2 made by a conducting material with N2 = 10 turns and length, a = 25 cm and width b = 12 cm. Now we
take another coil S1 with self inductance L, and no. of turns N1 and keep it at some distance away from the rectangular loop. We will not be changing
the position of the coil and rectangular loop. The mutual inductance between the coil and the rectangular loop is M = 8 mH and the rate of…
A long, straight current carrying solenoid creates a uniform magnetic field B= 12 mTinside itself when the current is I = 26 A
a) Calculate the number of turns per unit length, n, where the total number of turns is N1.
Turns per unit length, n
Give your answer to at least three significance digits.
b) Suppose this solenoid is connected to an AC circuit inside a physics laboratory. If the length of the solenoid is l = 32 cmand the diameter is
d = 14 cmcalculate its self inductance L1.
Self inductance, L,
Give your answer to at least three significance digits.
F
Assume the battery in Figure CQ20.12a is replaced by an ACsource and the switch is held closed. If held down, the metalring on top of the solenoid becomes hot. Why?
Chapter 21 Solutions
College Physics
Ch. 21 - Review Question 21.1 Your friend thinks that...Ch. 21 - Review Question 21.2 You have a bar magnet and a...Ch. 21 - Review Question 21.3 What difficulty would occur...Ch. 21 - Review Question 21.4 Why do we write the law of...Ch. 21 - Review Question 21.5 How does the law of...Ch. 21 - Review Question 21.6 A capacitor in an electric...Ch. 21 - Prob. 7RQCh. 21 - Review Question 21.8 Explain how (a) an electric...Ch. 21 - 1. In which of the experiments with a loop and a...Ch. 21 - If you move the coil in Figure Q21.2 toward the N...
Ch. 21 - The magnetic flux through a 100-cm2 loop is...Ch. 21 - Your friend says that the emf induced in a coil...Ch. 21 - 5. A metal ring lies on a table. The S pole of a...Ch. 21 - 6. One coil is placed on lop of another The bottom...Ch. 21 - Two coils are placed next to each other flat on...Ch. 21 - 8. Two identical bar magnets are dropped...Ch. 21 - A windows metal frame is essentially a metal loop...Ch. 21 - Four identical loops move at the same velocity...Ch. 21 - A 12-V automobile battery provides the thousands...Ch. 21 - A respiration detector consists of a coil placed...Ch. 21 - A parallel plate capacitor and a lightbulb are...Ch. 21 - Prob. 14MCQCh. 21 - A bar magnet falling with the north pole facing...Ch. 21 - 16. An induction cooktop has a smooth surface When...Ch. 21 - Describe three common applications of...Ch. 21 - 18. Two rectangular loops A and B are near each...Ch. 21 - A simple metal detector has a coil with an...Ch. 21 - 20. Construct flux-versus-time and emf-versus-time...Ch. 21 - How is it possible to get a 2000-V emf from a...Ch. 21 - You connect a capacitor and a lightbulb in series...Ch. 21 - Prob. 23CQCh. 21 - * You and your friend are performing experiments...Ch. 21 - You decide to use a metal ring as an indicator of...Ch. 21 - * To check whether a lightbulb permanently...Ch. 21 - * Flashlight without batteries A flashlight that...Ch. 21 - You need to invent a practical application for a...Ch. 21 - * Detect burglars entering windows. Describe how...Ch. 21 - 7. * A coil connected to an ammeter can detect...Ch. 21 - * The B field in a region has a magnitude of 0.40...Ch. 21 - 9. EST How do you position a bicycle tire so that...Ch. 21 - * EST Estimate the magnetic flux through your head...Ch. 21 - 11. * Estimate the magnetic flux through the...Ch. 21 - Prob. 12PCh. 21 - 13. You have the apparatus shown in Figure P21.13....Ch. 21 - * You suggest that eddy currents can stop the...Ch. 21 - * Your friend thinks that an induced magnetic...Ch. 21 - The magnetic flux through three different coils is...Ch. 21 - 17. The magnetic flux through three different...Ch. 21 - 18. A magnetic field passing through two coils of...Ch. 21 - BIO Stimulating the brain in transcranial magnetic...Ch. 21 - * To measure a magnetic field produced by an...Ch. 21 - Prob. 21PCh. 21 - 22 * BIO Breathing monitor An apnea monitor for...Ch. 21 - 23. * A bar magnet induces a current in an -turn...Ch. 21 - * An experimental apparatus has two parallel...Ch. 21 - A Boeing 747 with a 65-m wingspan is cruising...Ch. 21 - Prob. 27PCh. 21 - 28. ** BIO EST Magnetic field and brain cells...Ch. 21 - * You need to test Faraday's law You have a...Ch. 21 - 30. * You build a coil of radius r (m) and place...Ch. 21 - * EST Generator for space station Astronauts on a...Ch. 21 - 35. * A toy electric generator has a 20-tum...Ch. 21 - 36. * A generator has a 450-turn coil that is 10...Ch. 21 - 39. * A generator has a 100-turn coil that rotates...Ch. 21 - Prob. 40PCh. 21 - * A rectangular wire loop is moving with constant...Ch. 21 - field that points into the page (Figure P21.42)....Ch. 21 - 43. The voltage across an AC power supply is given...Ch. 21 - 44. * The alternating current through a capacitor...Ch. 21 - * The alternating current through a solenoid is...Ch. 21 - 46. * The rms voltage of household AC in Europe is...Ch. 21 - Prob. 47PCh. 21 - Prob. 48PCh. 21 - 49. You need to build a transformer that can step...Ch. 21 - 50. Your home’s electric doorbell operates on 10...Ch. 21 - 51. A 9.0-V battery and switch are connected in...Ch. 21 - * You are fixing a transformer for a toy truck...Ch. 21 - 53. * A wire loop has a radius of 10 cm. A...Ch. 21 - BIO Hammerhead shark A hammerhead shark (Figure...Ch. 21 - ** You have a 12-V battery, some wire, a switch,...Ch. 21 - 61.* EST A sparker used to ignite lighter fluid in...Ch. 21 - * EST Design a magnetometer Your friend needs to...Ch. 21 - Prob. 63GPCh. 21 - 64 EST MRI Jose needs an MRI (magnetic resonance...Ch. 21 - * Magstripe reader A magstripe reader used to read...Ch. 21 - 66. Show that when a metal rod L meters long moves...Ch. 21 - 67. ** EST The Tower of Terror ride Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...Ch. 21 - BIO Magnetic induction tomography (MIT) Magnetic...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Review. In Figure P30.42, a uniform magnetic field decreases at a constant rate dB/dt = K, where K is a positive constant. A circular loop of wire of radius a containing a resistance R and a capacitance C is placed with its plane normal to the field. (a) Find the charge Q on the capacitor when it is fully charged. (b) Which plate, upper or lower, is at the higher potential? (c) Discuss the force that causes the separation of charges. Figure P30.42arrow_forwardFigure CQ20.7 shows a slidewire generator with motional cmf 0 when the wire at A slides across the top and bottom rails at constant velocity v0. (a) When the wire reaches B so that the area enclosed by the circuit is doubled, determine the ratio of the new cmf to the original cmf, /0. (b) If the wire's speed is doubled so that v = 2v0 determine the ratio /0. Figure CQ20.7arrow_forwardA circuit consists of a conducting movable bar and a lightbulb connected to two conducting rails as shown in Figure OQ31.10. An external magnetic field is directed perpendicular to the plane of the circuit. Which of the following actions will make the bulb light up? More than one statement may be correct, (a) The bar is moved to the left, (b) The bar is moved to the right. (c) The magnitude of the magnetic field is increased. (d) The magnitude of the magnetic field is decreased. (e) The bar is lifted off the rails.arrow_forward
- Two circular conductors are perpendicular to each other as shown in Figure P32.29. Suppose conductor B carries a current. Will a current be induced in conductor A if there is a change in the current in conductor B? (The loops are insulated from one another.) Figure P32.29arrow_forwardA long solenoid with 10 turns per centimeter is placed inside a copper ring such that both objects hove the same central axis. The radius of the ring is 10.0 cm. and the radius of the solenoid is 5.0 cm. (a) What is the emf induced in the ring when the current 2 through the solenoid is 5.0 A and changing at a rate of 100 A/s? (b) What is the emf induced in the ring when 1=2.0A and. dI/dt=100A/s ? (c) What is the electric field inside the ring for these two cases? id: Suppose the ring is moved so that its central axis and the central axis of the solenoid are still parallel but no longer coincide. (You should assume that the solenoid is still inside die ring.) New what is the emf induced in the ring? (el Can you calculate the electric field in die ring as you did in part (c)?arrow_forwardFigure P30.39 shows a stationary conductor whose shape is similar to the letter e. The radius of its circular portion is a = 50.0 cm. It is placed in a constant magnetic field of 0.500 T directed out of the page. A straight conducting rod, 50.0 cm long, is pivoted about point O and rotates with a constant angular speed of 2.00 rad/s. (a) Determine the induced emf in the loop POQ. Note that the area of the loop is a2/2. (b) If all the conducting material has a resistance per length of 5.00 /m, what is the induced current in the loop POQ at the instant 0.250 s after point P passes point Q? Figure P30.39arrow_forward
- An 820-turn wire coil of resistance 24.0 is placed on lop of a 12 500-turn, 7.00-cm-long solenoid, as in Figure P20.57. Both coil and solenoid have cross-sectional area of 1.00 104 m2. (a) How long does it take the solenoid current to reach 0.632 times its maximum value? (b) Determine the average back emf caused by the self-inductance of the solenoid during this interval. The magnetic field produced by the solenoid at the location of the coil is one-half as strong as the field at the center of the solenoid. (c) Determine the average rate of change in magnetic flux through each turn of the coil during the stated interval. (d) Find the magnitude of the average induced current in the coil. Figure P20.57arrow_forwardThe magnetic field through a square loop of wire with sides of length 3.00 cm changes with time as shown in Figure P32.8, where the sign indicates the direction of the field relative to the axis of the loop. Plot the emf induced in the loop versus time. FIGURE P32.8arrow_forwardA coil with a self-inductance of 3.0 H and a resistance of 100 2 carries a steady current of 2.0 A. (a) What is the energy stored in the magnetic field of the coil? (b) What is the energy per second dissipated in the resistance of the coil?arrow_forward
- A thin wire = 30.0 cm long is held parallel to and d = 80.0 cm above a long, thin wire carrying I = 200 A and fixed in position (Fig. P30.47). The 30.0-cm wire is released at the instant t = 0 and falls, remaining parallel to the current-carrying wire as it falls. Assume the falling wire accelerates at 9.80 m/s2. (a) Derive an equation for the emf induced in it as a function of time. (b) What is the minimum value of the emf? (c) What is the maximum value? (d) What is the induced emf 0.300 s after the wire is released? Figure P30.47arrow_forwardA 75-turn, 10.0 cm diameter coil rotates at an angular velocity of 8.00 radius in a 1.25 T field, starting with the plane of the coil parallel to the field. (a) What is the peak emf? (b) At what time is the peak emf first reached? (c) At what time is the emf first at its meet negative? (d) What is the period of the AC voltage output?arrow_forwardA conducting rod of length moves with velocity v parallel to a long wire carrying a steady current I. The axis of the rod is maintained perpendicular to the wire with the near end a distance r away (Fig. P30.44). Show that the magnitude of the emf induced in the rod is E=0Iv2ln(1+lr) Figure P30.44arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning